a2 United States Patent

US009185125B2

(10) Patent No.: US 9,185,125 B2

Varsanyi et al. (45) Date of Patent: Nov. 10, 2015
(54) SYSTEMS AND METHODS FOR DETECTING (56) References Cited
AND MITIGATING THREATS TO A
STRUCTURED DATA STORAGE SYSTEM U.S. PATENT DOCUMENTS
7,154,855 B2 12/2006 Hardy
(71) Applicant: DB Networks, Inc., Poway, CA (US) 7,522,605 B2 4/2009 Spencer et al.
7,782,790 Bl 8/2010 Nadeau et al.
2001/0001608 Al 5/2001 Parruck et al.
(72) Inventors: Eric Varsanyi, Plymouth, MN (US); 2005/0097209 Al 5/2005 McDonagh et al.
David Rosenberg, Los Altos, CA (US); %88?;8%}%2‘6% i} * 2%88? Eﬁ%r_df ?131 ~~~~~~~~~~~~~~~~~~ 726/24
. 1DricK € .
gtl:‘llgksfl?;z;’; Sstafﬁ?éﬁi [CJX %SS)) 2008/0091405 Al 4/2008 Anisimovich et al.
Timothy Ruddick, Oceanside, CA (US) (Continued)
. FOREIGN PATENT DOCUMENTS
(73) Assignee: DB NETWORKS, INC., Carlsbad, CA
(as) Jp 2007151013 A 6/2007
WO 2005/109754 A1 11/2005
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
%atserét lls SZ)((]EE):I}Dde?2%r dszSuSted under 35 International Search Report and Written Opinion for PCT/US2013/
= Y ys: 023445, mailed on May 16, 2013, in 11 pages.
Myers. “An O(ND) Difference Algorithm and Its Variations,”
(21) Appl. No.: 14/151,597 Algorithmica, Nov. 1986, in 15 pages.
(Continued)
(22) Filed: Jan. 9,2014 .
Primary Examiner — Teshome Hailu
65 Prior Publication D Assistant Examiner — Aubrey Wysznski
(65) rior Publication Data (74) Attorney, Agent, or Firm — Procopio, Cory,
US 2014/0201838 Al Jul. 17,2014 Hargreaves & Savitch LLP
57 ABSTRACT
Related U.S. Application Data Systems, methods, and computer-readable media for detect-
(60) Provisional application No. 61/751,745, filed on Jan. me threan on a network. [n an embodiment, target nf:twork
11. 2013 traffic being transmitted between two or more hosts is cap-
’ ' tured. The target network traffic comprises a plurality of
ackets, which are assembled into one or more messages. The
p 2
(51) Int.Cl. assembled message(s) may be parsed to generate a semantic
HO4L 29/06 (2006.01) model of the target network traffic. The semantic model may
(52) US.Cl comprise representation(s) of operation(s) or event(s) repre-
S sented by the message(s). Score(s) for the operation(s) or
CPC oo HO4L 63/1425 (2013.01) Y S ; wae operalt
. . . event(s) may be generated using a plurality of scoring algo-
(58) Field of Classification Search rithms, and potential threats among the operation(s) or
CPC HO4L 63/1425 : dont :
... eVeIlt(S) may be ldentlﬁed us]ﬂg the SCOI'e(S).
USPC ittt 726/23

See application file for complete search history.

69 Claims, 27 Drawing Sheets

102 101 103
Network Network Network

agent 1 /

Switch / agent 2

104

106

N

107

105

Capture /
Analysis
Device

108

Detector

US 9,185,125 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2010/0020708 Al* 1/2010
2011/0082688 Al 4/2011
2011/0252152 Al 10/2011
2011/0258610 Al* 10/2011
2012/0263182 Al 10/2012

Okadaetal. 370/252
Kim et al.

Sherry et al.

Aarajetal.cccoennnne 717/128

Enomoto et al.

OTHER PUBLICATIONS
International Search Report and Written Opinion for PCT/US2014/
068616, mailed on Feb. 25, 2015, in 6 pages.

International Search Report and Written Opinion for related PCT
Application No. PCT/US2014/010908, mailed on Jun. 13, 2014, in
12 pages.

* cited by examiner

U.S. Patent Nov. 10, 2015 Sheet 1 of 27 US 9,185,125 B2

102 101 103
Nebwork Network Network
agent 1 ili Switch j} agent 2
104 105
108

AN

107
\\ Capture /
Analysis
Device
108
\ Destector

FIG. 1

U.S. Patent Nov. 10, 2015

Sheet 2 of 27

US 9,185,125 B2

208

\

106
201
\ Netwaork
Interface
Controller
207
202 e \
203
\ Bus Storage
Controller /’ Controller
‘ 204
Main Memory P
Memory Controller
Cache e 208
Memory
’/ 207
CPU

FIG. 2

208

Persistent
Storage

U.S. Patent Nov. 10, 2015 Sheet 3 of 27 US 9,185,125 B2

Persisient Storage Network Trafiic

& //301
Operating System v
311 Storage Network 500
IS Controller] peescs——. éms;:ﬂé?; P
Driver % riv(; ;
SIONN Filesystem 303 - Packet iiigff _}-305
Drivar Buffars Engine
&
Raw packat 306
Capture o
Mechanism
32~] Timing
Faciiities

308 ~._|

//304

¥

Maodsl
Log

Buffers

CaplurefAnalysis Address Space

308 \

Processing

Packet
Buffers

) 307

FIG. 3

U.S. Patent Nov. 10, 2015 Sheet 4 of 27 US 9,185,125 B2

107 e Network
Switch
108
Capture/Analysis Device 401
L
e 412
416~ | M—ﬂrﬂ?ﬁ
4 L 405
Buffer Engine e
Y
407
NIC Packet Buffers e
409
Controfler Driver e
411
Packet Filter Engine L~
412
h
. . 413
Operating System Capture P
Mechanism
414
¥
415
Raw Packet Buffers L~
v
FIG. 4

Captura/Analysis Address Space

U.S. Patent

Nov. 10, 2015 Sheet 5 of 27 US 9,185,125 B2
Raw packst capture
mechanism
\
Raw packet 415
buffers
kil
501
Packet filter L~
w
Ethernet header M/‘"‘SOE
interpreter
A
YLAN header %503
interpreter
kil
510 s o T 504
- Reassembly interpreter and L
; buffers
................................ reassembly
P packet 505
buffers
507 \
511 ~_{ Pending out of TOP header
' " interpreter and
L sequence buffers
e —— ¢ reassaembly
Byvie stream 508
buffers
508
s Bundier
Bundie 500

descriptors
and buffers

U.S. Patent

Nov. 10, 2015

508
N

(

descriptors
and buffers

Bundle

Sheet 6 of 27

TNS protocol
interpreter

I

TTC protocol
interpreter

602
/,/"’

¥

603
Ciperation filter f/
k4
804
Model generatar //
Semantic traffic %665
madel
v
606
Model log
buffers

Filesystem

FIG. 6

US 9,185,125 B2

U.S. Patent Nov. 10, 2015

Agent 1
102

Sheet 7 of 27

Switch
101

Reguastt -~ 701

Agent 2
103

Requesti Ack” - 705

Requestt - 702

Request] - 703

US 9,185,125 B2

Capture Device
107

- Request! Ack” ~ 704

JResponset” - 708

‘Request! Ack” - 706

o~ Responsst” - 707

ey

“‘Responset Ack” - 710

‘Responsei”~ 709

‘Responset Ack” - 711

“‘Responset Ack” - 712

FIG. 7

U.S. Patent Nov. 10, 2015 Sheet 8 of 27 US 9,185,125 B2

TCP N Application
Kermel Reassembly Buncler Layer Handling

Requast 1.1 - 801

Requsest 1.1 Ack - 802 3

Raguest 1.1 data - 803

Regquest 1.2 - 804
Request 1.2 Ack - 805

“1 | Request 1.2 data - 806

Rasponse 1.1 - 807 >
Responsa 1.1 Ack ~ 808 >
Hasponse 1.1 data- 809 o
Pl
Reguest 1 - 810 -
Rasponse 1.2 Ack - 811 o L
P
Response 1.2 Ack - 812
Ll Response 1.2 data - 813 >
Response 1.3 -~ 814 o
P
Response 1.3 Ack - 815
<1 | Response 1.3 data - 818 N
Request 2.1 - 817 ~
P
Requast 2.1 Ack - 818 g
&

Request 2.1 data - 819

Response 1- 820

FiG. 8

U.S. Patent Nov. 10, 2015 Sheet 9 of 27 US 9,185,125 B2

o086
Attribute Templates "
e e o o o e o e e 2 e e o e ,
911 =~ i
T Attribute 1.1 Attribute 3.1 3
: i
912 _ Observabie ; g
%5"““’\ Aftribute 1.2 Aliribute 3.2 Altributes g-*‘"f 908
H H
§ Attribute 3.3 :
§
; ;
fax 000 000 100t D00 00 r A0S a0 VOC 0K GO0 100 0K DOC KOS XX GOG 10O J00C 0OG OO0 1B Sax OOORKD: OO COD KOO 900K OOD KT OB 6GD HOO JOX 0OC KGO MK 0BG GO0 X0GC 00 o0 108
o07
Chosen Attribute Ternplates L~
mmmmmmmmmmmmmmmmm i ——
813 g
ﬁgm\"““ Altribute 1.3 | Altribute 2.1 Atiribute 4.1 ;
’ |- 909
: Attribute 2.2 Attribute 4.2 L™
; Inferred :
: Alfributes Allribute 4.3 g
I A R .
902

)
i ; G0t
: Element 1 Element 4 :"’Mf
i ; g
. AR AN AR i TN
; ; 910
914 T Data ! Data 4 r“““"’ﬂ
g

S anh WA v AL WAD MM Ay WA W GMY WD WAR GNM AL INAY ANV AL WA MMY DA e AMY MM AN WA ANY AAD WA 0NV DA WA AMY A WNM MV AN BN AN AL

U.S. Patent

Nov. 10, 2015

Sheet 10 of 27

US 9,185,125 B2

/10’11

Add referenced

1002 ~

Any more
_ lemplatesin 3
. 5ession set? 7

" Yes

Choose next
tempiate

1003\

1004 o
” Any mare

L Dbservable
>, attributes? o7

Yes

End -
Message

f1 (0%

Add
tempate to
set of
matched
termplates

Choose next atiribute

/‘EQOS

k4

Find element for atiribute

/ 1008

_Attribute applies ™,
N oslement?

#1007

FIG. 10

templates to
session sat

&

1010

Ternplate refers 10
additional
. femplates? 7

No

/1012

Apply all attributes from set
of matched templates 1o
elements

2013

End -
Message
Decoded |

U.S. Patent Nov. 10, 2015 Sheet 11 of 27 US 9,185,125 B2

1130
Client f/

{web browser}

Network(s) § HTTRHTTPS

1110
Web Server /X

///i 112
Application Server

SQL

1114
Datsbase Server ’X

FIG. 11
(PRIOR ART)

U.S. Patent Nov. 10, 2015 Sheet 12 of 27 US 9,185,125 B2

(A) SELECT 1 FROM USERS WHERE USERNAME = ‘joe’ AND PASSWORD = 'xyzzy'
Userenters; 'OR1=1-~

(B) SELECT 1 FROM USERS WHERE USERNAME ="0OR 1 =1 -7 AND PASSWORD = ‘xyzzy’

FlG. 12

~, 1305
/Capture, traffic ™
reassembly

1300 and inling
/,«1330
) —— 1310 Lexical
Database pfoiocoi e Analysis
interpreters
/‘i 320 RawiDB evemti/ 1315 /JE 325 /s'i 335
Identifier storace Semantic Traffic Language and Syritactic
' orag Model Generator semantics Analysis
§ /1 340
v o135 4 Semantic
Tally log | ~1350 Analysis
system system
+ /1355 /1366 &) /ﬁSES
Sumpmary > Leai"mng Master Scorer
Data System
»1 fal
/.3?0 l,x‘!STS il /1a80 %/1385
Event Log Mitigation
Algorithm Algorithm
Learning Scoring i
Subsystems | Subsystems Foont ’/1 390
Notification
¥
FIG. 13 Operator |,~1395
interfaces

U.S. Patent Nov. 10, 2015

Sheet 13 of 27

/.r'i 422

US 9,185,125 B2

Passive Tap

1440

Capture
Source

Caplure
Source

Monitor Device

FIG. 14

U.S. Patent Nov. 10, 2015 Sheet 14 of 27 US 9,185,125 B2

Capiure
Source

Capture

inbound
gueue

T
1508
Demux Q "/

U

S
1506
TCP filter /f
(:::::m__mmx

J— mf1 510
Demuitiplexer
LN I

AAAAAAAAAAAAAAAAA N 512
Conneclion
Host

) G

1522
Push gusue "/

1520 1524
Host queue *“/ Host gueue 4

514

Application

FIG. 15

U.S. Patent Nov. 10, 2015 Sheet 15 of 27 US 9,185,125 B2
Task NetTrafficStats PoriStats Notes
+.iterals ; literals__ +TimeStamp starl_ +TimeStamp starl_ -lftems with a Persistentid

+BindVals : bindVais_§ +TimeStamp end_ +TimeStamp end_ AliPortsiare persistent and stared by
+times / counts +uintd_{ totalBytes | {+uintb4_t bytes 1 the MDS
+hool : reExecuied +uint64_t packetDrops
+hool : unSure
g..* 0n
1 0.5
SqiStatament Session Port
+Persistentld id_ +bool 1 unSure_ +Persistentld id_
+8g! text +stdstring annotation_ +uintd_t portNum_
+bool | unSure_ R +sidistring monikar_...
i
Connection
+Pearsistentld id +aackiinetSockethddress clientEnd
+stdsiring © user_ +sock:InetScoketAddress serverEnd_
+baol 1 unSure +sock:netSocketAddress listenerAddr
+stdstring annotation_ +sid: string annotation_
0. 5 0.2
Service {Server
+Persistentid id_ |
+DbName names |}
+haol unSure_ HostData
+sted string annotation_ +TimeStamp start_

] 1...*
1. e 1

Listen

&

Database

+Parsistentid id_

+sock: Socketaddress © addr_

+hool unSure_

FIG. 16

+Persistentld id_ §
+sid string annotation_

Clientf

+TimeStamp end_
+uint32_t sysTick
+uint32_t userTick

HostProcessData

+TimeSiamp sampleTime_

g.."

Host

+Persistentid id
+stdisiring name_

+socklinstAddress addr

HostProc

! 0.~

ipRealm

+Persistantic id_
+sid:siring desc_
+stdisiring spec_

+uintG4_t pid_

+TimeStamp wallClockStart_
+TimeSum cpullsed
+std:istring name_
+stadnstring annotation

U.S. Patent

out of sco

Nov. 10, 2015

pe

(all fields clearad)

taskExecDispatch()

Sheet 16 of 27

US 9,185,125 B2

Task interaction between Feed Manager and a
Consumer

{Consumer states shown are for fllustrative
pUrpOSes only)

SESSION
statement
literals_
bindVals_

Set

execSiatus

preDispatch Ts_

Time of first RPC in task

dispatch Ts

Time exec dispaltched

aggregate Time_

Active time

spent hefore exec dispaich

complete Ts_

Jndef

rowsin

of bind rows in

bytasin
bytesOul_

Total traffic

before exeo dispateh

transferCount__

Number of RPCs before exec

result i

Undef

v

taskExecComplete()

dispatenis
completaTs

Start/end time of exe RPC

aggregateTime_

Total active ime for fask ‘
{not always complete Ts_-dispatchTs_)

Totai rows

NOTES

-Fields not shown in a given cell are left
unchanged

-Totals are from the beginning of the task
-The task lifscycle matches that of a resull sef,
not a cursor

taskRows{)
Note: this may be called at a lower

rowsOut_ {non zero if bundlad}
bytesin .
by%es@u'{_ Total traffic
fransferCount_ Tolal RPC count
\ aggragateTime_
dispatchTs_
bundled execffetch complateTs

OFf N0 FoOWs

taskComplete()

rowsin
rowsOul
bytesin
bytesQul_
transferCount_

Total active tims for task

Most recent R start/end
time

Total rows

Total ytes
Jotal RMEG count

5eS5I0N_
statement_
literals
bindVals_
execSiatus

Sat

prelispatch Ts_

Time of first RPC in task

aggregateTime_

dispatchTs
completeTs

otal active time 1or task
{not completeTs -dispatchTs)
Most recent RPC starfend

time

rowsin
rowsQOul_

Total rows

bytesin
bytesOul_

Total byles

transferCount_

Total RPC count

result

Set

out of scope

FIG. 17

frequency than on the wire feich requaesis

may
repaat

U.S. Patent Nov. 10, 2015

Sheet 17 of 27

Time and user learning schema

pro.profiles

{Learned)}

mds.databases

US 9,185,125 B2

pro.profiles
{User)

e

, database id

profile_id /;g\

adminlearn_spec

spec_id

A

admin.interval

databae____i(j profile_id

adminsgl_group uf

statement id

AN

mds.sql_statements

U.S. Patent Nov. 10, 2015 Sheet 18 of 27 US 9,185,125 B2

Learning by time regions

[e
Bmds’i%(& Sal Statement i s |
exac delails (by time) ; ime interval 1
(by time) y Hme, E |
1350 \‘/ 13451 1362 1384 \'j 13661
yd yd § yd yd d g
. . Learned e
Feed Log Fally Board |} Projile Database Learn Spec g
—— | |
| ! ! + /,—1 368 |
.1 Leaming Manager § I
; -’ Run N i
b o oo o o e e s s o s 2 d
A 920 1922
DS1.process() et DE2.0r00ess(l i dsZ.bitpals
1930 1932
+ /4912 < £
B D83.process() B ds3rulesDisabled
dst.statements
All statements seen Sed SN ey
by the DB in all B -pm‘f';f_ssﬁ»’ These do all thelr
time intervals in the does nothing processing in the
Learn Spec L1880 > pader per
. . ‘ DSG.E{)FQC@SS(} scorer context
By Learned Profile E— does nothing after an LM run
-
/«1 960
4 DSOprocess(y 1)
"1 does nothing
1970
" "i These don't
] DS10process() % learn from time
does nothing regions
f1980
1 D&14.process()
FIG. 19 "1 does nothing »

U.S. Patent Nov. 10, 2015 Sheet 19 of 27 US 9,185,125 B2

Scoring and caches

,/1 315 /,201 a Pl 362 1/2(}20
Feed User Profile Lgfcigii d Database List
E |]
¥ /1365 21380
Scorer B Event Loy
E 1912
191 Q\ ds1.statements
&1 geed fO7 LgarnedProfile, UserProfile
for each Database in list
1922
102
I D82 « ds2.bitpats
e
5 1932 %
193 O
™ DS3 " ds3.rulesDisabled =
a
E 944 18
184 P
SN DS4 Pattern cache)
: © 1946
Feadback
{self learning}
1848
185
O\\ Ds6 Fattern cache o
£ —
5 1964
196
AN DS9 < Web Tier live feed
g 1874
197
AN £S10 P— Web Tier live feed
E 1984
1980\
D514 o Static parse patierns
FIG. 20

U.S. Patent

Nov. 10, 2015

Sheet 20 of 27

US 9,185,125 B2

Operator Initiates 2110
Learning

Tallies

Database
specification

Time range
specification

216
s O

Learned Seat

Store SQL 1D from
tally as leamed

‘ ny event

P spacs lefi?

Yes

. No

2170
e

2160

Event
specifications

Read event
speacification

! /«2180

Store template 1D

FIG. 21

from tally to learned
set

Learmed Seat

219
Learning Cempiet%@—

U.S. Patent Nov. 10, 2015 Sheet 21 of 27

Master Scorer 2046
signais new SQL
hased event

)
N
2

Learned Set .

222G

Is QL

template 1D Yes

US 9,185,125 B2

i avent in
learnead set?

22
v 30

Concept Novelty
gatto 1.0

224
s G

n

Concept Novelty
setto 0.0

2250
Scoring Complate

FIG. 22

U.S. Patent Nov. 10, 2015 Sheet 22 of 27 US 9,185,125 B2

i
i #2305 ;
i PassiveNetwork e R R REETRES
E Tap : | .
|
j
, |
i ¥ /23‘30 : ; /2330
§
i Peassive TCP : Web Agent
| Stack . i (TCP Proxy)
; 2350 |
; .
; ¢ 2315 Request G /2365 ; 2335 ¢
i : — | WebSBocket
I Filter Services : Request Object | Interface
E :
, i i
i 5320 (_ URLGuery : L2340 4
| . S R N WebAgent
H Optional 8SL Y Interface
: Decryption !
a — § DS10
E 2325 Post Data |
|| HTTP Parser |
| ; 1970
i '}960 DSQ [T

US 9,185,125 B2

Sheet 23 of 27

Nov. 10, 2015

U.S. Patent

¥¢ olid
asu0dssy ’
BT L dilH
DIOH 8SE3|84
p Gyl
asundsay
asuodsay asuodssy >
ad Al @
QU
A 159nbay
P DUBUILIOY) P DUBLLILLIOY 1sanbay
Vi aQ h ag - ~TTT]
P 1sonbay
dilH
MA8d 40 ddy weby gem HIEMOUE

U.S. Patent

Nov. 10, 2015 Sheet 24 of 27

/,251 0 Web Traffic /2530

Browser

3

US 9,185,125 B2

2550

/25253

DBFW

Al

Apache2.x

/2540

g mod_ dbfw_agl

ModWebSocket

.| mad_weabsock

2560

&
=

Controd Traffic

FIG. 25

el_dbiw

US 9,185,125 B2

Sheet 25 of 27

Nov. 10, 2015

U.S. Patent

9z "9id
ssuodsay asuodsay
JBAIBS 90 Sl B UOHENddY IS B
_ PUBLLLLIOD 1ssnbey
ag e diiH 2
0zoz” 01927

¥ zaysedy

joaley

188nbay go

oseoleN

A

188nhaM "Bg

O

isanbay 7

0aUPSY

B
L

A9

ozsz”

dbiH 4L

asuodsay

dbLiH €L

1sanbey

F::3

oscz”

dliH L

JBsmoig

o167

US 9,185,125 B2

Sheet 26 of 27

Nov. 10, 2015

U.S. Patent

168 migp pow

N ssa%0d pdig

O
O
O

188 MIOD PO

¢ gs8900d pdue

e myap pow

Z ssaookd pduH

182 Aap poL

1 $s900d pdnn

Tl petE(
Alowap paieus

XA E

Wm MR 1OND0SGEM POU

N $88504d pdnH

U.S. Patent Nov. 10, 2015 Sheet 27 of 27 US 9,185,125 B2

SN =

i Z Processor " Secondary ™
560 Memary 570

Internal Medium

Main Memory =
§ @ 565 575
N Removable
2K N Medium
& VO interf 589
RS, /O interface
3 VAT—> 585 \\\ﬁ ------- —4*"/
5
% (’— 805
3 Communication External Medium
S K= teriace 590 NN 595

/L\r::> Baseband Radio Antenna
820 815 610

US 9,185,125 B2

1
SYSTEMS AND METHODS FOR DETECTING
AND MITIGATING THREATS TO A
STRUCTURED DATA STORAGE SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Patent
App. No. 61/751,745, filed on Jan. 11, 2013 and titled “Sys-
tem and Method for Detecting and Mitigating Threats to a
Structured Data Storage System,” the entirety of which is
hereby incorporated herein by reference. This application is
also related to U.S. patent application Ser. No. 13/750,579
(“the *579 application™), filed on Jan. 25, 2013 and titled
“Systems and Methods for Extracting Structured Application
Data from a Communications Link,” which claims priority to
U.S. Provisional Patent App. No. 61/593,075, filed on Jan. 31,
2012 and titled “System and Method for Extracting Struc-
tured Application Data from a Communication Link,” the
entireties of both which are hereby incorporated herein by
reference.

COPYRIGHT AUTHORIZATION

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND

1. Field of the Invention

The embodiments described herein are generally directed
to the field of information technology (e.g., with features of
network switching, routing, proxying, and database technolo-
gies), and, more particularly, to the detection of security
threats and breaches by analyzing traffic between database
servers and their clients, web servers and their clients, and/or
in technologies other than structured data storage systems,
such as directory protocols, Hypertext Transfer Protocol
(HTTP), email traffic, etc.

2. Description of the Related Art

Over the last few decades, structured—and, in particular,
relational—database technology has become a critical com-
ponent in many corporate technology initiatives. With the
success of the Internet, the use of database technology has
exploded in many consumer and business-to-business appli-
cations. However, with the popularity of database architec-
tures, new risks and challenges have arisen, such as complex
and difficult-to-identify performance issues and subtle gaps
in security that can allow confidential data to be access by
unauthorized users.

A very common practice is to use a three-tiered architec-
ture to implement applications, as illustrated in FIG. 11.
While FIG. 11 depicts only a single web server 1110, appli-
cation server 1112, database server 1114, and client 1130, it
should be understood that it is common to have multiple
servers 1110, 1112, and 1114, directly or indirectly, con-
nected to multiple clients 1130. A client browser on a client
1130 provides an end user an access point to the application
via one or more networks 1120 and web server 1110. Com-
mon applications include online storefronts, banking access,
medical records, and the like. In many cases, an application,
such as a mobile application, replaces the web browser, but

10

15

20

25

30

35

40

45

50

55

60

65

2

the protocols and operations of the application are very simi-
lar. Web server 1110 parses and processes requests received
from client 1130 and returns results to client 1130 over net-
work(s) 1120, which may include the Internet. Application
server 1112, communicatively connected to web server 1110,
contains the core (e.g., business) logic of the application.
Application server 1112 uses the resources of one or more
database servers 1114 to store and query persistent state
needed by the application, such as account information,
including, for example, account balances, purchasing infor-
mation, payment information, shipping information, and/or
the like. Web server 1110, application server 1112, and data-
base server 1114 are often communicatively connected via
one or more internal networks, but it should be understood
that they could be connected in other manners (e.g., via exter-
nal network(s), direct connection, etc.).

Application server 1112 may make requests to retrieve,
summarize, or change data stored by database server 1114
using Structured Query Language (SQL). SQL is a special-
purpose language designed for managing sets of data stored
in tables that may be related to one another using relational
algebra and tuple relational calculus. It is primarily a declara-
tive language, but current commercial implementations
extend it with procedural scripting elements. Application
server 1112 converts HTTP requests into SQL requests that
retrieve or query data.

Practical applications limit the types of operations an exter-
nal user may request, but ultimately the applications must
generate SQL that expresses some aspect of one or more
application operations to database server 1114. Applications
may generate SQL using a variety of techniques. Typically,
there are a set of SQL templates that are specialized with the
user request data and then submitted to the database server.

A very common security flaw is for application server 1112
to allow some unanticipated portion of the external HTTP
request to be aggregated with the generated SQL, causing the
semantics of the SQL statement to no longer match the appli-
cation’s intent. This may allow unauthorized extraction or
modification of data on database server 1114. This is referred
to as SQL injection and can be responsible for significant data
loss. An unauthorized modification to the database server
state is also possible, allowing an attacker to not only change
the data in the database but to cause execution of arbitrary
program code on database server 1114. This code may, in
turn, open additional security vulnerabilities in the applica-
tion by providing a tunnel through security screens for the
attacker to gain further unauthorized access.

FIG. 12 illustrates an example of SQL injection. Statement
A represents an example SQL query that the application
designer expected to be run. Specifically, a username “joe”
and password “xyzzy” are checked against a database table
“USERS” to determine if the user should be granted access to
the application. However, an attacker may enter the string
“OR 1=1—"as the username, instead of “joe” or some other
valid username, which results in the application generating
the SQL query in Statement B. This effectively changes the
semantic meaning of the statement. Specifically, the query
will always return a “1” regardless of the password entered,
since “1” will always “=1" and the portion of the query that
performs the password check (ie, “AND
PASSWORD="xyzzy’”) is commented out with the “—”
token. Thus, the injected SQL allows the attacker access to the
application even without knowledge of a valid username or
password. There are many methods to trick application server
1112 into passing this manner of attack through to database

US 9,185,125 B2

3

server 1114. So many, in fact, that it is very difficult for an
application designer to implement an application that pre-
vents all such attacks.

Denial-of-service attacks may also be perpetrated on the
database via direct SQL injection techniques or via more
subtle parametric changes. In either case, such techniques or
changes can be used to cause database server 1114 to use an
unusually large amount of'its limited resources in too short of
a timespan. Furthermore, database denial-of-service attacks
can render database server 1114 useless with only a handful
of packets spread out over a long period of time. Thus, since
this type of attack does not require a large amount of network
traffic to mount, it is difficult to detect using traditional meth-
ods.

Many simple toolkits that probe for SQL injection vulner-
abilities are available for free or at a cost. However, available
toolkits do not provide the application or its operators any
direct way to detect when they are being victimized by an
SQL injection attack. Thus, the application will not realize it
has issued hostile commands to database server 1114, and
database server 1114 has no way to know when the com-
mands that it is receiving are unauthorized.

Unauthorized access may be detected based on an access
not matching the usual source (e.g., location, Internet Proto-
col (IP) address, etc.), user credentials, time or date of the
access, and the like. Specific tables or columns in the database
being accessed from an unusual source or user, at an unusual
time or date, and/or in an unusual way (e.g., changing an
object which is normally only read) constitute another form
of security threat. The response database server 1114 pro-
vides to a given request varies, but aspects of the response—
such as the number of rows returned or an error being
returned—may also indicate unauthorized activity.

Existing systems that attempt to perform these functions
are plagued with a very high number of false-positive threat
indications. This makes them unusable in practice.

SUMMARY

Accordingly, systems and methods are disclosed for
detecting and mitigating unauthorized access to structured
data storage and processing systems (e.g., which utilize SQL
for operations). In an embodiment, an active or passive or
inline feed of network traffic may be received. For example,
such an embodiment may utilize the traffic feed disclosed in
the *579 Application, and discussed below. The systems and
methods may discover one or more database servers on one or
more networks based on the received network traffic, learn
behaviors of application(s) based on the discovered database
server(s), and evaluate ongoing usage of the application(s) to
discover breaches or attempted breaches of server security.
Any detected breaches can be reported to an operator with
detailed forensic data. Alternatively or additionally, the
threatening activities can be blocked.

In an embodiment, a method for detecting threats on a
network is disclosed. The method comprises: capturing target
network traffic being transmitted between two or more hosts,
wherein the target network traffic comprises a plurality of
packets; and using at least one hardware processor to
assemble the plurality of packets into one or more messages,
parse the assembled one or more messages to generate a
semantic model of the target network traffic, wherein the
semantic model comprises one or more representations of one
or more operations or events represented by the one or more
messages, generate one or more scores for the one or more
operations or events using a plurality of scoring algorithms,

10

15

20

25

30

35

40

45

50

55

60

65

4

and identify one or more potentially threatening ones of the
one or more operations or events based on the one or more
scores.

In another embodiment, a system for detecting threats on a
network is disclosed. The system comprises: at least one
hardware processor; and one or more executable modules
that, when executed by the at least one hardware processor,
capture target network traffic being transmitted between two
or more hosts, wherein the target network traffic comprises a
plurality of packets, assemble the plurality of packets into one
or more messages, parse the assembled one or more messages
to generate a semantic model of the target network traffic,
wherein the semantic model comprises one or more represen-
tations of one or more operations or events represented by the
one or more messages, generate one or more scores for the
one or more operations or events using a plurality of scoring
algorithms, and identify one or more potentially threatening
ones of the one or more operations or events based on the one
or more scores.

In another embodiment, a non-transitory computer-read-
able medium having one or more instructions stored thereon
for detecting threats on a network is disclosed. The one or
more instructions, when executed by a processor, cause the
processor to: capture target network traffic being transmitted
between two or more hosts, wherein the target network traffic
comprises a plurality of packets; assemble the plurality of
packets into one or more messages; parse the assembled one
or more messages to generate a semantic model of the target
network traffic, wherein the semantic model comprises one or
more representations of one or more operations or events
represented by the one or more messages; generate one or
more scores for the one or more operations or events using a
plurality of scoring algorithms; and identify one or more
potentially threatening ones of the one or more operations or
events based on the one or more scores.

In a further embodiment, generating the semantic model of
the target network traffic comprises generating one or more
language-independent representations of one or more opera-
tions or events represented by the one or more messages.
Additionally, each of the one or more language-independent
representations of one or more operations or events may
identify one or more of a session, a user, a database server, a
type of operation or event, a lexical structure of one or more
messages associated with the operation or event, a parse
structure of the one or more messages associated with the
operation or event, a semantic structure of the one or more
messages associated with the operation or event, and timing
data related to the operation or event.

In a further embodiment, parsing the one or more messages
to generate a semantic model of the target network traffic
comprises: lexically analyzing the assembled one or more
messages into a plurality of dialect-independent tokens; pars-
ing one or more sequences of the plurality of tokens into one
or more parse trees comprising a plurality of parse nodes; and
semantically analyzing the one or more parse trees to gener-
ate one or more dialect-independent semantic representations
of the one or more operations or events.

In a further embodiment, generating one or more scores for
the one or more operations or events using a plurality of
scoring algorithms comprises: traversing the one or more
parse trees to identify one or more operations or events;
generating a first score for at least one of the one or more
operations or events using a first one of the plurality of scoring
algorithms; generating a second score for the at least one
operation or event using a second one of the plurality of
scoring algorithms, wherein the second algorithm is difterent

US 9,185,125 B2

5

than the first algorithm; and computing a total score for the at
least one operation or event based, at least in part, on the first
score and the second score.

In a further embodiment, one or more representations of
acceptable network traffic are received; and each of one or
more of'the plurality of scoring algorithms are trained to score
target operations or events using the one or more representa-
tions of acceptable network traffic.

In a further embodiment, the one or more representations
of acceptable network traffic comprise a plurality of repre-
sentations of acceptable operations or events, and training at
least one of the one or more scoring algorithms to score target
operations or events using the one or more representations of
acceptable network traffic comprises: parsing the plurality of
representations of acceptable operations or events into a plu-
rality of parse trees; and generating a pattern-matching tree
that is an isomorphism between two or more of the plurality of
parse trees and represents a unification of the two or more
parse trees.

In a further embodiment, generating one or more scores for
the one or more operations or events using a plurality of
scoring algorithms comprises generating a score for a target
operation or event using the at least one scoring algorithm by:
parsing a representation of the target operation or event into a
target parse tree; computing a tree-edit distance comprising a
minimum number of edits necessary to unify the target parse
tree with the pattern-matching tree; and, based on the tree-edit
distance, generating a scalar value indicating a probability
that the target operation or event represents a malicious attack
or nominal application variability.

In a further embodiment, training at least one of the one or
more scoring algorithms to score target operations or events
using the one or more representations of acceptable network
traffic comprises generating one or more profiles of normal
network traffic, wherein the one or more profiles of normal
network traffic comprise one or more of a normal number of
rows returned by an operation, a normal execution time of an
operation, one or more normal parameter values for an opera-
tion, one or more normal types of content returned by an
operation (e.g., to identify a return content comprising Social
Security numbers and/or credit card numbers as a potentially
threatening operation or event), a normal execution time of an
operation for a certain time period (e.g., certain hour(s) of a
day, certain day(s) of a week, etc.), a normal frequency of an
operation for a certain time period (e.g., certain hour(s) of a
day, certain day(s) of a week, etc.), an identifier of an appli-
cation, and a model of normal execution semantics for an
operation. For example, a model of normal execution seman-
tics for an operation may be built on the specific detailed
execution semantics for a database server, so that access to
specific objects within the database in ways, at times, and/or
with frequencies that are outside the learned behavioral norm
represented by the model may be scored and/or identified.

In a further embodiment, training the one or more scoring
algorithms comprises, for each of the one or more scoring
algorithms, generating a model, for scoring operations or
events, using the one or more representations of acceptable
network traffic.

In a further embodiment, at least one of the trained one or
more scoring algorithms determines whether a structural sig-
nature of a target operation within the target network traffic
matches the structural signature of an acceptable operation,
learned during training of the at least one scoring algorithm,
to generate a score for the target operation. In addition, the at
least one trained scoring algorithm determines a minimum
edit distance between a structure of the target operation and a
structure of the acceptable operation, and wherein the mini-

30

35

40

45

55

6

mum edit distance represents a minimum number of inser-
tions required to create the structure of the target operation
from the structure of the acceptable operation. The target
operation may comprise a structured query language (SQL)
statement. Furthermore, the at least one trained scoring algo-
rithm may maintain a set of one or more templates of accept-
able SQL statements.

In a further embodiment, at least one scoring algorithm
comprises a first scoring algorithm, and a second one of the
plurality of scoring algorithms: determines a background fre-
quency of lexical errors within one or more acceptable opera-
tions learned during training of the first scoring algorithm;
identifies one or more lexical errors within a target operation
within the target network traffic; and computes a probability
that the one or more lexical errors within the target operation
are in accordance with the background frequency of lexical
errors within the one or more acceptable operations learned
during the training of the first scoring algorithm.

In a further embodiment, at least one of the plurality of
scoring algorithms searches a target operation within the
target network traffic for one or more segments of structured
query language (SQL) that potentially indicate an attack. The
one or more segments of SQL may represent potentially one
or more SQL injections. Alternatively or additionally, the one
or more segments of SQL may represent potentially one or
more time-consuming SQL clauses. Furthermore, each of the
one or more segments of SQL may be associated with one or
more performance parameters, and the at least one scoring
algorithm may calculate an estimated performance metric for
the target operation based on the one or more performance
parameters associated with any of the one or more segments
of SQL identified within the target operation.

In a further embodiment, at least one of the plurality of
scoring algorithms parses a structured query language (SQL)
statement into a plurality of segments, and determines
whether the plurality of segments satisfy one or more criteria.

In a further embodiment, assembling the plurality of pack-
ets into one or more messages comprises: synchronizing the
plurality of packets; sorting each of the plurality of packets
into one of two host queues according to the transmission
direction of the packet; processing the two host queues into a
single push queue by alternately processing the packets in one
of the two host queues until a packet is encountered which
cannot be disposed of or the host queue is empty and then
processing the packets in the other one of the two host queues
until a packet is encountered that cannot be disposed of or the
host queue is empty; if loss of a packet is detected, generating
a synthetic gap packet to stand in for the lost packet; and
bundling packets in the single push queue into the one or more
messages, wherein each of the one or more messages is a
request message or a response message. The synthetic gap
packet may comprise an indication that it is a stand-in for a
lost packet.

In a further embodiment, one or more identified potentially
threatening operations are prevented from being performed
on a database that is accessible to one of the two or more
hosts.

BRIEF DESCRIPTION OF THE DRAWINGS

The details of the present invention, both as to its structure
and operation, may be gleaned in part by study of the accom-
panying drawings, in which like reference numerals refer to
like parts, and in which:

FIG. 1 illustrates an example architectural environment in
which traffic between network agents may be captured for
analysis, according to an embodiment;

US 9,185,125 B2

7

FIG. 2 illustrates an example hardware architecture for a
capture-and-analysis device, according to an embodiment;

FIG. 3 illustrates an example software architecture for a
capture-and-analysis device, according to an embodiment;

FIG. 4 illustrates example components and data flows
related to capturing packet-level traffic and preparing the
captured traffic for analysis, according to an embodiment;

FIG. 5 illustrates example components and data flows
related to reassembly of packet-level traffic into byte streams,
request and response bundles, and ultimately a structured
model of operations taking place between network agents,
according to an embodiment;

FIG. 6 illustrates example application-level analysis of
captured traffic resulting in the generation of a semantic
operation model, according to an embodiment;

FIG.7is aladder diagram illustrating packet interactions in
a transaction from a perspective that is external to a capture-
and-analysis device or module, according to an embodiment;

FIG. 81s aladder diagram illustrating packet processing for
a transaction from a perspective that is internal to a capture-
and-analysis device or module, according to an embodiment,
wherein the elements of the first request (e.g., elements 801
and 803) represent packets, the elements of the first request
data (e.g., elements 803 and 806) represent contiguous
streams of byte data, and the first request 810 represents a
bundle of stream data that corresponds to message bound-
aries;

FIG. 9 illustrates an example data flow for application
protocol matching, according to an embodiment;

FIG. 10 illustrates a process which may be used by an
application protocol interpreter to select attribute templates
for decoding an application protocol message, according to
an embodiment;

FIG. 11 illustrates typical components involved in the
operation of a network-based application;

FIG. 12 illustrates an example of an SQL injection;

FIG. 13 is a functional block diagram of a system for
monitoring network traffic for potential attacks, according to
an embodiment;

FIG. 14 illustrates a network tap between two hosts,
according to an embodiment;

FIG. 15 illustrates an example flow diagram for a TCP
reassembly process, according to an embodiment;

FIG. 16 illustrates example state structures representing
the environment of a request, according to an embodiment;

FIG. 17 illustrates an example set of event notifications,
according to an embodiment;

FIG. 18 illustrates an example of a time and user learning
schema, according to an embodiment;

FIG. 19 illustrates example inputs to a time-based learning
system and a summary of byproducts of learning for the
illustrated algorithms, according to an embodiment;

FIG. 20 illustrates a high-level data and control flow
around a master scorer, according to an embodiment;

FIG. 21 illustrates a process of generating a set of SQL
templates in a learning phase of an illustrated scoring algo-
rithm, according to an embodiment;

FIG. 22 illustrates a process of scoring in a scoring phase of
an illustrated scoring algorithm, according to an embodi-
ment;

FIG. 23 illustrates data feeds for two illustrated scoring
algorithms, according to an embodiment;

FIG. 24 illustrates timing in the context of release-hold
management of an illustrated scoring algorithm, according to
an embodiment;

FIG. 25 illustrates an arrangement of components around a
web agent, according to an embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 26 illustrates the timing of a web agent, according to
an embodiment;

FIG. 27 illustrates an inter-process communication mecha-
nism, according to an embodiment; and

FIG. 28 illustrates a processing system on which one or
more of the processes described herein may be executed,
according to an embodiment.

DETAILED DESCRIPTION

Systems and methods are disclosed for generating a
detailed semantic model or description of operations between
two or more network agents. In an embodiment, the disclosed
systems and methods are applied to network sessions com-
prising device interactions that are synchronous at the appli-
cation layer. This includes, without limitation, remote proce-
dure calls (RPCs) or similar request-and-response
interactions, such as those utilizing Hypertext Transtfer Pro-
tocol (HTTP). In these interactions, a first device transmits a
request to a second device through one or more networks, and
the second device returns a response to the first device via the
one or more networks. Both the request and the response may
comprise one or more packets transmitted between the
devices. The packet-level flow between the request and
response may overlap temporally (from the perspective of
either device or a network-mirroring device) and/or may be
collected from multiple points within the network architec-
ture. In an embodiment, multiple network sessions between
communicating network agents may generate packets that
interleave arbitrarily without affecting operation of the dis-
closed systems and methods.

According to an embodiment, the systems and methods
extract a model or description of semantic operations per-
formed between two network agents from an imperfect copy
of'the network packet traffic exchanges between the network
agents. This model may include, without limitation, raw per-
formance data on each operation, descriptive metadata (e.g.,
query string, data types, data sizes, etc.), and/or actual data.
When traffic is missing, out of order, or the exact specification
of the traffic is unknown, a partial model of operations may
still be generated and used at an application-layer level, and
the framework of a session may be resynchronized based on
a change in direction of data flow (e.g., between request and
response messages).

Database queries or operations that update the data in a
database may be serviced quickly or slowly by a database
server, depending on the complexity of the data query or
update operation, the instantaneous load being experienced
by the database server, or by other factors which may be
beyond the database server itself (e.g., the storage system, a
varying virtual central processing unit (CPU) allotment, etc.).
In an embodiment, by observing the time lag between a
specific request and response, using the descriptive metadata
(e.g., Structured Query Language (SQL) query string), and by
observing the content and format of the data itself, the per-
formance of many operational aspects of the database server
can be determined in real time. In addition, the nature of data
and actual data being updated or retrieved is latent in the
network data packets flowing bi-directionally between a cli-
ent system and server. By observing this traffic, inappropriate
attempts to extract or change parts of the database may be
detected. In an embodiment, semantics of the operations
between a client system and server are extracted and analyzed
using a copy of the existing traffic. Based on this analysis,
traffic may be modified to accelerate or otherwise improve
performance and/or mitigate against various forms of attacks.

US 9,185,125 B2

9

In an embodiment, a capture component is placed within a
network topology, such that it is exposed to traffic transmitted
between the plurality of network agents to be analyzed.
Observed packets may be copied and transmitted to a filter
component via a series of network links and/or buffer stages.
The filter component may then discard packets that are not
related to the network agents and/or applications being ana-
lyzed. The remaining packets may be passed to a reassembly
component, which builds a representation of the byte stream
for each network session using sequence data and other
descriptive data in the packets and/or the time of receipt of the
packets.

Once the representation of the byte stream for a session is
built by the reassembly component, it may be passed to an
application-layer analysis component. The analysis compo-
nent may unpack the contents of the byte stream into the
request and response data and descriptions to generate a
semantic operation model of the traffic. This semantic model
may be used by an application-specific component, which
uses the semantic model to detect security and performance
issues and/or mitigate detected breaches of a security policy.

It should be understood that the capture component, filter
component, reassembly component, application-layer analy-
sis component, application-specific component and any other
components or modules discussed herein may be imple-
mented in hardware, software, or both hardware and soft-
ware, and may be separate or integrated components. For
instance, the filter component, reassembly component, appli-
cation-layer analysis component, and application-specific
components may be software modules executing on hardware
of a capture device or on a separate device that is communi-
catively coupled to the capture device.

1. Reassembly

1. Layers Overview

At the outset, the layers of the Open System Interconnec-
tion (OSI) model will be described. The OSI model defines a
networking framework to implement protocols in seven lay-
ers. A layer serves the layer above it and is served by the layer
below it.

Layer 7: Application Layer. This layer supports applica-
tions and end-user processes. The application layer
interacts with software applications that implement a
communication component. Functions of the applica-
tion layer include identifying communication partners,
determining resource availability, and synchronizing
communications.

Layer 6: Presentation Layer (or Syntax Layer). This layer
translates between application formats and network for-
mats in order to provide independence from differences
in data representations (e.g., encryption). The presenta-
tion layer transforms data from the network into a form
that the application layer can understand, and formats
and encrypts data from an application to be sent across a
network.

Layer 5: Session Layer. This layer controls the connections
between computers. It establishes, manages, and termi-
nates connections between applications. The session
layer is commonly implemented explicitly in applica-
tion environments that use RPCs.

Layer 4: Transport Layer. This layer provides transparent
transfer of data between network agents, and is respon-
sible for end-to-end error recovery, segmentation and
de-segmentation, and flow control. Flow control
involves determining whether data is coming from more
than one application, and integrating each application’s
data into a single stream for the physical network. The
transport layer ensures complete data transfer.

10

15

20

25

30

35

40

45

50

55

60

65

10

Layer 3: Network Layer. This layer provides the functional
and procedural means of transferring variable length
data sequences from a source host on one network to a
destination host on a different network, while maintain-
ing the quality of service requested by the transport
layer. It creates logical paths for transmitting data from
node to node. It provides switching, routing, forwarding,
addressing, internetworking, error-handling, conges-
tion-control, and packet-sequencing functions. The net-
work layer determines the way that data will be sent to a
recipient agent.
Layer 2: Data Link Layer. This layer provides the func-
tional and procedural means to transfer data between
network agents and to detect and possibly correct errors
that may occur in the physical layer. The data link layer
encodes and decodes data packets, provides transmis-
sion protocol knowledge and management, and handles
errors in the physical later, as well as flow control and
frame synchronization. It assigns the appropriate physi-
cal protocol to data and defines the type of network and
packet-sequencing. The data link layer is subdivided
into a Media Access Control (MAC) layer and a Logical
Link Control (LLC) layer. The MAC layer controls how
a network agent gains access to data and the permission
to transmit data. The LLC layer controls frame synchro-
nization, flow control, and error-checking.
Layer 1: Physical Layer. This layer defines the electrical
and physical specifications for devices. It conveys the bit
stream (e.g., via electrical, light, or radio signal) through
the network at the electrical and/or mechanical level.
The physical layer provides the hardware means of send-
ing and receiving data on a carrier, including defining
cables, cards, voltage levels, timing, and other physical
aspects.
2. System Overview
FIG. 1 illustrates an example system for capturing and
analyzing interactions between two or more network agents,
according to an embodiment. The system may comprise a set
of one or more capture-and-analysis devices (e.g., servers)
107 which host and/or execute one or more of the various
functions, processes, and/or software modules described
herein. In addition, device(s) 107 are communicatively con-
nected to a device, such as network switch 101, via a com-
municative path 106. Network switch 101 is positioned on a
network path 104/105 between a first network agent 102 and
a second network agent 103. The network comprising net-
work path 104/105 may comprise any type of network,
including an intranet and/or the Internet, and network agents
102 and 103 may communicate using any standard and/or
proprietary protocols. For instance, network agents 102 and
103 may communicate with each other through the Internet
using standard transmission protocols, such as HT'TP, Secure
HTTP (HTTPS), File Transfer Protocol (FTP), and the like.

In an embodiment, capture-and-analysis device(s) 107
may not be dedicated device(s), and may instead be cloud
instances, which utilize shared resources of one or more
servers. It should be understood that network agents 102 and
103 and capture-and-analysis device(s) 107 may comprise
any type or types of computing devices capable of wired
and/or wireless communication, including without limita-
tion, desktop computers, laptop computers, tablet computers,
smart phones or other mobile phones, servers, game consoles,
televisions, set-top boxes, electronic kiosks, Automated
Teller Machines, and the like. Network agent 102, network
agent 103, and/or device(s) 107 may also comprise or be
communicatively coupled with one or more databases, such
as a MySQL, Oracle™, IBMT™, Microsoft™ SQL,

US 9,185,125 B2

11

Sybase™, Access™, or other types of databases, including
cloud-based database instances. In addition, while only two
agents 102 and 103, one switch 101, and one set of capture-
and-analysis device(s) 107 are illustrated, it should be under-
stood that the network may comprise any number of agents,
switches, and capture-and-analysis devices.

FIG. 2 illustrates an example hardware architecture for
capture-and-analysis device(s) 107, according to an embodi-
ment. The internal hardware architecture may comprise stan-
dard, commercially-available components. A copy or mirror
of'the traffic sent between network agents 102 and 103, which
comprises network packets, may be received from network
switch 101 via interface 106 (e.g., 1000BASE-T link) by a
network interface controller (NIC) 201. A bus controller 203
may transfer packet data from NIC 201 via bus 202 (e.g., a
Peripheral Controller Interface (PCI) bus) through memory
controller 204 into main memory 205.

Memory controller 204 provides a path for CPU 207 to
read data from and write data to main memory 205 via cache
memory 206. CPU 207 may execute a program comprising
software instructions stored in main memory 205 which
implement the processes described herein.

Storage controller 207 may be connected via bus 210 to bus
controller 203. Storage controller 207 may read and write
data (e.g., a semantic model) and program instructions to a
persistent storage device 209 via link 208. For example, stor-
age device 209 may comprise a commercial one-terabyte
Serial Advanced Technology Attachment (SATA) hard drive,
and link 208 may comprise a SATA-II link. However, it
should be understood that any storage device and associated
interface may be used.

FIG. 3 illustrates an example high-level software architec-
ture for capture-and-analysis device(s) 107, according to an
embodiment. In this example, the architecture comprises an
operating system kernel 301 (e.g., Linux 3.1) and related
utilities which manage the physical hardware architecture
described above. Software program or modules 304, which
comprise the capture-and-analysis processes described
herein, are copied into memory by operating system kernel
301. These modules 304 may then be executed by CPU 207 to
analyze and process received packets, and generate a seman-
tic model of the operations taking place between network
agents 102 and 103.

Network interface controller driver 302 controls NIC 201
and marshals packets received on network link 106 into
packet buffers 303 in main memory 205. Some packets may
be discarded by a packet filter engine 305 under the direction
of capture-and-analysis modules 304. For example, packet
filter engine 305 may discard packets that are not related to
specific protocols of interest to the model-building mecha-
nism of modules 304, such as administrative traffic (e.g.,
Address Resolution Protocol (ARP)) or other broadcasts or
traffic between network agents other than those of interest.
Raw packet capture module 306 may then copy the retained
packets into ingress packet buffer(s) 307 used by capture-
and-analysis modules 304.

Capture-and-analysis modules 304 perform processing
308 (as described elsewhere herein) on the ingress packet
traffic placed in packet buffers 307 to generate a semantic
model of the operations taking place between network agents
102 and 103. This model may be incrementally placed into
model log buffers 309, and then written by file system driver
310 (e.g., in the context of a Linux operation system, an Ext4
file system driver) and storage controller driver 311 to persis-
tent storage device 209.

Kernel 301 may provide timing facilities 312 to the cap-
ture-and-analysis modules 304, so that they may interpret the

10

15

20

25

30

35

40

45

50

55

60

65

12

packet traffic in buffers 307 during processing 308. Timing
facilities 312 may include a mechanism to retrieve the current
time of day at high resolution (e.g., microseconds or greater).
Modules 304 may compare the time, retrieved from timing
facilities 312, to timestamps written by network interface
controller driver 302 into the packets as they are received.
These timestamps may be used, for example, to determine
when expected packets are to be considered lost by the reas-
sembly and protocol-analysis code.

3. Packet Capture Mechanism

In an embodiment, packet traffic between network agents
102 and 103 is copied by a network mirror or Switched Port
Analyzer (SPAN) tap mechanism. For example, a network
switch 101 may be placed in the path 104/105 between net-
work agents 102 and 103, such that all packets transmitted by
network agent 102 to network agent 103, and vice versa, are
transmitted through switch 101 via communication links 104
and 105. In an embodiment, network switch 101 may be a
Layer 2 (i.e., the data link layer) network switch. Switch 101
may be configured to transmit a copy of all packets, received
from both network agents 102 and 103 via network links 104
and 105, respectively, to capture-and-analysis device(s) 107
via communication link 106. Each of the network links 104,
105, and/or 106 may conform to the Institute of Electrical and
Electronics Engineers (IEEE) 802.3ab (1000BASE-T) Eth-
ernet standards.

In addition, one or more detectors 108, which may be local
(e.g., executed on the same machine) or remote to capture-
and-analysis device 107 (e.g., executed on separate
machine(s) communicatively connected to capture-and-
analysis device 107 via one or more networks), may be pro-
vided. Detector(s) 108 may process the output of capture-
and-analysis device 107. For example, detector(s) 108 may
utilize semantic descriptions of operations between network
agents 102 and 103, generated by capture-and-analysis
device 107, to create one or more higher-level models, includ-
ing multiple layers of higher-level models and different types
of higher-level models (e.g., models specific to a security
application, a performance application, and/or for other types
of applications). Modules of capture-and-analysis device 107
may interface with detector(s) 108 via one or more applica-
tion programming interfaces (APIs).

FIG. 7 illustrates an example request and response inter-
action between two network agents 102 and 103, according to
an embodiment. The packets exchanged in the interaction
may comprise an Ethernet header, Internet Protocol (IP)
header, and TCP header. A request 701, which may comprise
a complete Layer 7 request payload in one or more packets,
can be transmitted from network agent 102 via link 104 to
switch 101. Request 701 may be addressed to network agent
103. Accordingly, switch 101 transmits a copy 702 of request
701 on link 105 to network agent 103. However, switch 101
also transmits a copy 703 of request 701 on link 106 to
capture-and-analysis device(s) 107.

Network agent 103 may send an acknowledgement 704 to
network agent 102 via link 105. Acknowledgement 704 is
received at switch 101, which is on the communication path
105/104 between network agents 103 and 102. Switch 101
sends a copy 705 of acknowledgement 704 on link 104 to
network agent 102, and also transmits a copy 706 of acknowl-
edgement 704 on link 106 to capture-and-analysis device(s)
107. Acknowledgement 704 may comprise one or more pack-
ets that indicate to network agent 102 that request 701 was
received.

Network agent 103 may send a response 707 to network
agent 102 via link 105. Response 707 is received at switch
101, which sends a copy 708 of response 707 on link 104 to

US 9,185,125 B2

13

network agent 102. Switch 101 also transmits a copy 709 of
response 707 on link 106 to capture-and-analysis device(s)
107. Response 707 comprises one or more packets that form
a response to request 701.

Network agent 102 may send an acknowledgement 710 to
network agent 103 via link 104. Acknowledgement 710 is
received at switch 101, which is on the communication path
104/105 between network agents 102 and 103. Switch 101
sends a copy 711 of acknowledgement 710 on link 105 to
network agent 103. Switch 101 also transmits a copy 712 of
acknowledgement 710 on link 106 to capture-and-analysis
device(s) 107. Reception of acknowledgement copy 711 by
network agent 103 completes a single application-level
request-and-response cycle that began with the transmission
of request 701 by network agent 102.

FIG. 4 illustrates an example process for capturing a
packet, according to an embodiment. In an embodiment, the
processing of packets in capture-and-analysis device(s) 107
begins with a packet being received at NIC 416 or 302 from
network switch 101 via link 106, which may be an Ethernet
link. Flectrical signals used on network link 106 may be
demodulated, for example, by a Media Independent Interface
(MII) for an Ethernet physical transceiver (PHY) 401. MII/
PHY 401 may also recover data and clock information. The
demodulated data and clock information may be passed as a
digital bit stream 402 to a network MAC 403, which separates
the stream into discrete packets and applies an error-correc-
tion code to verify that the packets have not been corrupted
during transmission. Corrupted packets may be discarded
during this phase. In an embodiment, network PHY 401 and
MAC 403, along with their attendant interfaces, may be
defined by IEEE 803.3ab (1000BASE-T) and/or related Eth-
ernet standards, and may be implemented as part of a com-
mercially available NIC.

Inan embodiment, buffer engine 405 in NIC 416 assembles
the data from MAC 403 into representations of the packets,
and stores the representations in packet buffer(s) 407. Con-
troller driver 409 (which may correspond to driver 302 in FI1G.
3) passes the received packets stored in packet buffer 407
through a packet filter engine 411. Packet filter engine 411
may comprise or utilize instructions generated by a program
which compiles an optimized packet filter from a high-level
network description. The resulting packet filter discards
packets that are not of interest to model-building process 308.
What remains are TCP/IP packets that are intended for recep-
tion by the network agents of interest (e.g., network agents
102 and 103) and/or for specific TCP ports. The filter (e.g., the
specific agents and/or TCP ports of interest) may be config-
ured by a user of the system.

In an embodiment, the filter may comprise a set of one or
more specifications or criteria, which may be specified via a
user interface and/or as text lines in a configuration file. For
example, a specification may include, without limitation, one
or more I[P addresses (e.g., defined as singletons or ranges),
one or more TCP port numbers (e.g., defined as singletons or
ranges), and/or one or more Virtual Local Area Network
(VLAN) tags. In addition, each of the specifications may be
positive or negative. A positive specification will keep or
allow packets meeting the specification, whereas a negative
specification will discard or deny packets meeting the speci-
fication. Implicit specifications may also exist. For instance,
completely empty or non-TCP packets may be discarded
without an explicit specification being established. For each
packet, the set of specifications are processed in order until
one of them matches the packet in question. Once a packet is
matched to one of the specifications, the action specified (e.g.,

20

25

35

40

45

50

14

allow or deny) is enacted. Denied packets are discarded,
while allowed packets are passed on to the next module in the
analysis chain.

An operating system capture mechanism or facility 413
(e.g., in the case of a Linux operating system, AF_PACKET,
version 2) may copy the packets remaining after the first-
stage filter 411 into raw packet buffers 415. Raw packet
buffers 415 may be shared with, or accessible by, the capture-
and-analysis address space 304.

4. Packet Analysis

Packets placed in raw buffer 415 by operating system cap-
ture mechanism 413 are processed or analyzed by the pro-
grams or modules residing in the capture-and-analysis
address space 304. In an embodiment, the result of this analy-
sis is a semantic model of the operations between two net-
work agents at Layer 7 (i.e., the application layer). For
instance, this model may describe the database operations
between a database client and a database server in terms of
events and their surrounding contexts.

In an embodiment, illustrated in FIG. 5, packets are pro-
cessed by capture-and-analysis modules 304 after they are
placed in raw packet buffers 415 by operating system capture
mechanism 413. A second-stage packet filter 501 may be
applied to discard non-TCP packets that were not previously
discarded by in-kernel first-stage filter 411. Filter 501 may
also discard TCP control packets (e.g., packets with all flags
set) that are not used or are harmful to the reassembly process,
but can not be easily removed by first-stage filter 411. Nota-
bly, in an embodiment, first-stage filter 411 is intended to run
with very little state or configuration information, whereas
second-stage filter 501 has access to broad real-time state
provided by higher layers.

Examples of packets that may be harmful include those that
indicate unusual or unexpected conditions in TCP state. For
instance, a “Christmas tree” packet with all control bits set
may cause the internal state machine of the TCP stack to
misinterpret the packet and use the data in it. This data may
potentially hide an attack in a properly formatted packet
received around the same time. As another example, harmful
packets may include a packet that duplicates the TCP
sequence space of a previous packet. Sending both sets of data
for processing by a higher layer would cause the higher layer
to see the invalid data. Other examples of harmful packets are
packets with invalid checksums or length fields. These may be
misinterpreted by higher layers, causing them to read un-
initialized storage space (e.g., a buffer-overrun type of
attack). As yet another example, packets deemed by a higher
layer to not be of interest may be harmful. Such packets are
identified by their source/destination IP/port and VLLAN
tuple, and this identification changes dynamically. It is not
practical to recompile a specific filter every time a higher
layer identifies a TCP connection as “uninteresting,” so the
filtering is done in a place where dynamic state is available.

In an embodiment, an Fthernet header interpreter 502
determines the end of the Ethernet header. Ethernet header
interpreter 502 may then discard packets that are not tagged as
IP unicast or VLAN (e.g., according to IEEE 802.1Q). For
instance, multicast packets may not be of interest and can
drain resources needed to handle a high-load situation,
whereas VL AN-tagged packets may need to be kept so that
the underlying “unicast” header and other headers can be
extracted from them in order to decide whether or not they
should be kept. A VLAN header interpreter 503 may extract
the VLAN identifier as an identifier attribute on the final
model for packets with a VLLAN header. The extracted VLAN
header may be used to associate a packet with a TCP connec-
tion. A TCP connection, in this context, may be identified by

US 9,185,125 B2

15

a tuple of source IP, destination IP, source TCP port, destina-
tion TCP port, VLLAN identifier, and/or physical receive port.
The use of the VL AN identifier and receive port allows the
system to differentiate traffic seen on different virtual or real
networks that may be using cloned, identical IP configura-
tions. VLAN header interpreter 503 may also discard any
VLAN-tagged packets that are not IP.

In an embodiment, an IP interpreter and reassembler 504
(which may be compliant with Request for Comments (RFC)
791) extracts the source address and destination address from
packets, and reassembles sequences of fragmented IP packets
into single IP packets in IP packet buffers 505. Fragments of
IP packets may be held in reassembly buffers 510 until either
all other fragments for the IP packet are received or a timeout
occurs. If a timeout occurs, all fragments for the IP packet
may be discarded, or, alternatively, assembled as incomplete
and optionally marked as incomplete. A short timeout on
packets held for reassembly can ensure that memory usage is
kept in check in a fragmented environment with high packet
loss.

Completed IP packets in IP packet buffers 505 may be
processed by a TCP header interpreter and stream reassem-
bler 507 (which may be compliant with RFC 793). TCP
header interpreter and stream reassembler 507 may sort IP
packets into streams of data per TCP connection and data
direction (e.g., from agent 102 to agent 103, or from agent 103
to agent 102), and store the sorted IP packets in byte stream
buffers 506. In other words, TCP header interpreter and
stream reassembler 507 may maintain a byte stream buffer
506 for each TCP stream direction. Out-of-sequence data
may be held in pending data buffers 511. As in-sequence data
for a given TCP stream direction is identified, it may be
appended to the corresponding byte stream buffer 506. The
data in byte steam buffers 506 hold ordered, contiguous, and
non-duplicated payload data for each specific TCP session in
each specific direction. As in-order TCP data is added to a
connection-specific byte stream buffer 506, a bundler 508
may be notified. Bundler 508 is also notified if a message
boundary is detected (e.g., from a control packet, from a
change in direction of traffic, or from a timeout that indicates
that no additional data has been received on a stream for a
predetermined period of time).

Thus, pre-Layer 7 processing starts with raw FEthernet
packets, and ends with byte stream buffers and an event
stream which describes notable events in a session. For
example, the notable events in a TCP session may comprise
an indication that in-order TCP data has been added to the
byte stream buffer corresponding to the TCP session, an
indication that no additional data has been added after a
timeout period, or an indication that a TCP control message
has been received which closes the session. The byte and
event streams may be passed to bundler 508, which com-
mences the Layer 7 portion of the analysis process.

5. Application Layer Processing

5.1. Bundling

A “bundle” is a complete request message or a complete
response message at the application layer. Bundler 508 may
use several strategies to determine the boundaries of a bundle
(e.g., using control packets, data direction, or timeouts) and
send a bundle of data on to the protocol analysis modules. For
instance, boundary determination methods may comprise one
or more of the following:

(1) Data Direction: in-sequence data received from the
reassembler for a single session will change directions,
for example, at the boundary between the request mes-
sage and the response message. This change of direction
may be used to indicate an end-of-message boundary.

10

20

25

35

40

45

55

16

For example, a change of direction may be used to indi-
cate an end to request message 701 and/or the beginning
of an acknowledgement message 704 or response mes-
sage 707. Thus, the very nature of request-and-response
interactions may be used to place markers in a data
stream to indicate message boundaries (or otherwise
indicate message boundaries) that could not have other-
wise been deduced without perfect knowledge and cap-
turing.

(2) Reassembler Activity Timeout: at the end of a message,
where no additional traffic is immediately forthcoming
(e.g., typically a response), a time tick from the reassem-
bler or an expiration of a timer may be used to indicate an
end-of-message boundary. For example, the occurrence
of a timeout, following receipt of a packet of response
message 707, may be used to indicate and end to
response message 707.

(3) Reassembler Missing Segment: if a segment of a mes-
sage is missing, a timeout may be used to indicate a
message boundary. A missing message segment may
represent a TCP packet which should have been received
with payload from the middle of a request or response
stream. An incomplete message may be marked as
incomplete. In many cases, protocol handlers can still
extract sufficient data from the incomplete message to
build a model. For example, an expiration of a timer or
an occurrence of a timeout, following receipt of a prior
segment or other event which results in an expectation of
the missing segment, may be used to indicate an end to
a request or response message. The incomplete request
or response message may be marked as incomplete. An
interpreter (e.g., TNS protocol interpreter 601 and/or
TTC protocol interpreter 602) may use a detected gap,
resulting from packet loss, to determine if it can extract
data, and how much data it can extract from the data that
it has, without having to receive all of the data.

In an embodiment, bundler 508 provides bundles of in-
sequence unidirectional application traffic and associated
descriptive data to an application protocol interpreter (e.g.,
interpreter 601). Bundler 508 needs no knowledge of the
application protocol specification, and may pass incomplete
traffic (i.e., bundles with one or more regions of missing
in-sequence data) to the application protocol interpreter if
segments or packets were lost.

FIG. 8 illustrates an example of a process for bundling a
request message and response message from raw packets
placed into raw packet bufters 415 by kernel 301. The packets
presented to the analysis modules are those sent by switch
101. (Refer back to the description of FIG. 7 for an example
of external packet handling.) In the example illustrated in
FIG. 8, the first request requires two payload packets (num-
bered 1.1 and 1.2) and three response packets (numbered 1.1,
1.2, and 1.3).

In an embodiment, the TCP reassembly phase illustrated in
FIG. 8 comprises processing by second-stage packet filter
501, Ethernet header interpreter 502, VL AN header inter-
preter 503, IP header interpreter and reassembler 504, and
TCP header interpreter and reassembler 507. The arrows
showing request and response data, provided by the TCP
reassembler 507 to bundler 508, represent the byte stream
buffers 506. The full request and response data, resulting
from bundler 508, comprise bundle descriptors and buffers
509. Bundle descriptors and buffers 509 provide the output of
bundler 508 to the first stage of Layer 7 protocol interpreta-
tion (e.g., TNS protocol interpreter 601 in an Oracle™-spe-
cific context).

US 9,185,125 B2

17

In the message flow illustrated in FIG. 8, the first request
segment 801 of the request transmitted from network agent
102 and the first segment 802 of the acknowledgement (ACK)
transmitted from network agent 103 are received. Reassem-
bly renders the payload of first segment 801 as a stream of
request data 803 to bundler 508. This provision of the payload
of first segment 801 may be provided before reception of
ACK 802, or may be provided after reception of ACK 802
which indicates that first request segment 801 was success-
fully received by network agent 103. In addition, the ACK
messages may be used by the reassembler to shortcut the
timeout process. For instance, if an ACK message is seen for
a payload packet that was not witnessed, it is likely that the
missing packet was lost in the capture path. In either case,
when bundler 508 receives first request data 803, there is no
indication yet that the message is complete. Thus, bundler
508 queues first request data 803.

The second and final request segment 804 of the request
from network agent 102 and the corresponding ACK 805
from network agent 103 are then received by the reassembler.
The reassembler appends this second request segment 804 in
sequence to the current stream of request data to bundler 508,
and provides the payload data 806 of second request segment
804 to bundler 508. Since bundler 508 still has no indication
that the message is complete, bundler 508 queues second
request data 806. In other words, bundler 508 appends second
request data 806 to first request data 803.

In the illustrated example, network agent 103 formulates a
three-segment response to the request from network agent
102. The first segment 807 of the response from network
agent 103 and the corresponding ACK 808 from network
agent 102 are received. The reassembler provides the payload
data 809 for first response segment 807 to bundler 508. Bun-
dler 508 detects that the direction of traffic has changed, and
determines that the previous message bundle it was collating
is now complete. Thus, bundler 508 sends this message
bundle 810 (i.e., the full request from network agent 102 to
network agent 103 comprising request data 803 and 806) to a
Layer 7 protocol interpreter for further analysis.

The additional two segments 811 and 814 of the response
from network agent 103 to network agent 102, and the corre-
sponding ACK messages 812 and 815, are received. Second
response segment 811 and third response segment 814 are
processed into data streams 813 and 816, respectively, and
provided to bundler 508. Bundler 508 collates first response
data 813 and second response data 816 (i.e., appends data 813
and 816 to data 809), but does not yet pass them on to the
Layer 7 protocol interpreter.

Next, a first segment 817 of a second, new request from
network agent 102 to network agent 103 and the correspond-
ing ACK 818 are received. The reassembler sends the request
data 819 from request segment 817 to bundler 508. Bundler
508 detects that the direction of data transmission has
changed, and issues the complete response 820 (i.e., compris-
ing response data 809, 813, and 816), corresponding to the
first request, to the Layer 7 protocol interpreter.

5.2. Application Protocol Decoding

Bundles 509, representing requests and responses, are pro-
cessed by higher-level protocol processing to build a semantic
model of the operations taking place between the two network
agents 102 and 103. While this higher-level protocol process-
ing may sometimes be described herein in the context of an
Oracle™ client-server connection, it should be understood
that this description is merely illustrative. The systems and
methods disclosed herein may be applied to or generalized for
other applications and contexts as well.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

In an example embodiment specific to an Oracle™ client-
server connection, a Transparent Network Substrate (TNS)
protocol interpreter 601 may be provided which unpacks the
procedure call and response payloads and asynchronous mes-
sages from TNS wrapper structures found in bundles 509.
TNS is a multiplexing and asynchronous message wrapper
protocol used by the Oracle™ client-server protocol. It
should be understood that alternative or additional interpret-
ers may be used for other protocols. For instance,
Microsoft™ SQL Server uses Tabular Data Stream (TDS)
and Symmetric Multiprocessing (SMP) wrapper protocols,
which may be abstracted similarly to TNS. LDAP, MySQL,
and Postgresql each use header wrapper protocols. In addi-
tion, HTTP is a header/wrapper protocol for eXtensible
Markup Language (XML) traffic or HyperText Markup Lan-
guage (HTML) traffic. An interpreter can be constructed for
any one or more of these protocols and used as an alternative
or in addition to interpreter 601.

Inaddition, in an embodiment, a Two Task Common (TTC)
protocol decoder or interpreter 602 may extract remote pro-
cedure verbs, parameters, and result payloads from each
request bundle and response bundle. The TTC protocol pro-
vides character set and data type conversion between different
characters sets or formats on a client and server.

Protocol template matching by a protocol interpreter (e.g.,
TTC protocol template matching by TTC protocol interpreter
602) will now be described with reference to FIG. 9. Mes-
sages processed by the protocol interpreter are made up of a
sequence of elements 901 (e.g., RPC verbs, RPC parameters,
RPC results, etc.), which are decoded by the interpreter into a
data form 910 that is useful for building a model. The trans-
formation from elements 901 to data 910 is controlled by a set
of attributes 908 and/or 909, which may be specific to each
element. Each message may contain a variable number of
elements. For example, FIG. 9 illustrates four elements 902,
903, 904, and 905.

A library 906 of attribute templates may be created for each
new protocol session by the protocol interpreter (e.g., TNS
protocol interpreter 601 and/or TTC protocol interpreter
602). Library 906 may be created using pre-coded knowledge
of'the protocol in question, and may be selected as a subset of
a larger library of attribute templates, for example, for one or
more protocols available for all sessions. For a newly discov-
ered or identified session, the template library 906 may be
initially filled with a relatively small set of templates that
match broad groups of protocol messages and refer to groups
of more specific templates. Multiple templates in the library
of attribute templates may match any given message. Thus, in
an embodiment, templates may be ordered in the library such
that more exact matches are checked by the protocol inter-
preter before less exact ones. A more exact match will more
fully describe a message than a less exact match.

In an embodiment, templates provide characterizations of
negotiated data types, RPC options, and client-server archi-
tectures. These characterizations may all be used to decode
the individual fields of specific RPCs. This can be especially
useful when the protocol is not fully specified or secret, or
when the initial negotiation for a session cannot be observed.
Among other things, template matching can be used to deter-
mine which side of a connection (e.g., TCP connection) is the
client and which side of the connection is the server, when the
start of a communication cannot be observed.

Each template in library 906 contains a list of one or more
attributes that may be applied to elements of a message (e.g.,
an RPC request or response message). For example, a tem-
plate that matches example message 901 would apply to the
elements 902, 903, 904, and 905 of message 901. The match-

US 9,185,125 B2

19

ing template can be used to decode message 901 into data
910, which is usable by model generator 604. Each template
in library 906 may also contain one or more references to
additional templates or a reference to a list of additional
templates.

In an embodiment, a template may comprise a set of
dynamic runtime classes (e.g., written in C++ code). The
templates or “marshallers” are configured to pull specific
patterns of data out of the stream and compose valid data. One
example is a string template, which is configured to recognize
a string represented by a one-byte length field followed by
one or more data blocks in which the last data block has a
zero-byte length field. Such a template can be tested by
attempting to de-marshal a string using the template. For
example, if, while a reading a string, the interpreter ends up
attempting to read past the end of the available data in the
bundle, the template has failed to match. However, it should
be understood that this is simply one illustrative example.
Other templates may fail to match for simpler reasons. For
example, if a high bit is never expected to be set in a specific
byte location in a numeric format, it may be determined that
a template configured to detect a number in the numeric
format has failed to match if a high bit is detected in the
specific byte location.

One or more observable attributes 908 (e.g., RPC field
types and common markers) may be determined by direct
examination of the elements. Template(s) 907 may be chosen
by matching one or more of their attributes to observable
attributes 908. In other words, observable attributes 908 may
be compared to the attributes of one or more templates in
library 906 to identify the best matching template(s) 907 from
library 906. Once matching template(s) 907 have been iden-
tified based on attributes observed from elements 902, other
attributes 909 may be inferred using template(s) 907.

FIG. 10 illustrates an embodiment of a process that may be
used by a protocol interpreter (e.g., TNS protocol interpreter
601 and/or TTC protocol interpreter 602) to find matching
template(s) 907 from template library 906, and decode a
message 901 into a set of useful data 910. At the start 1001 of
processing message 901, all templates in library 906 are in the
set of templates to be considered. The protocol interpreter
iterates through the templates in library 906 and removes
non-matching templates from further consideration. Accord-
ingly, in step 1002, it is determined whether any templates
remain for consideration. If so, a previously unconsidered
template is selected in step 1003.

Each template comprises a set of observable attributes.
Observable attributes may be those attributes which are
apparent or determinable from message 901 (e.g., from ele-
ments 902) or already known about message 901. As each
new template is selected for consideration in step 1003, each
attribute of that template may be placed in the set of attributes
to be checked or observed against message 901. These
attributes may comprise inferred attributes, i.e., attributes
which may not have been determinable from message 901 or
what was previously known about message 901 without hav-
ing first identified the template comprising the inferred
attributes. In step 1004, it is determined whether any
attributes remain to be checked. If so, an unchecked attribute
is selected in step 1005.

The template indicates to which element of the message
each attribute within the template applies. In step 1006, the
start of the element, to which the attribute selected in step
1005 applies, is located in message 901. The start of the
element may be located by using previously validated observ-
able or inferred attributes from the chosen template. For

10

15

20

25

30

35

40

45

50

55

60

65

20

example, the size of a previous element may be an inferred or
observed attribute, and this size may be used to locate the next
element in the message.

In step 1007, the selected attribute (e.g., attribute 911) is
checked against the located element (e.g., element 902). If
this check is successful (e.g., the located element satisfies or
corresponds to the selected attribute), the next observable
attribute in the selected template is selected and checked. The
process of steps 1004, 1005, 1006, and 1007 may repeat until
all observable attributes have been checked.

If, in step 1007, an attribute fails to check against an ele-
ment of message 901, the process may return to step 1002.
This process may repeat until all templates in the session’s
library 906 have been checked, and/or until it is otherwise
determined that no more templates must be checked. A check
may be unsuccessful, for instance, if the element is not
present (e.g., due to packet loss, or due to the template not
being an appropriate match for message 901) or if the element
does not fit the form of the attribute (e.g., a data type or value
range). Furthermore, if no library template is found that suc-
cessfully checks against message 901, message 901 may be
marked as completely undecodable in step 1008. On the other
hand, if all observable and/or inferred attributes in a template
successfully check against message 901, the template is
added to a set of matched templates, or the attributes of the
template are added to a set of attributes, in step 1009.

If a template is chosen for the set of matched templates in
step 1009 based on matched attributes, it is determined in step
1010 whether the chosen template contains an inferred
attribute that references an additional set of one or more
templates. For example, this additional set of one or more
templates may comprise more specific templates. The addi-
tional set of one or more templates is added to the template
library 906 for the session in step 1011, and the processing of
message 901 is continued in step 1002, based on the supple-
mented template library 906.

Once all templates in template library 906, including any
referenced templates added in step 1011, have been consid-
ered with respect to the elements of message 901, message
901 is decoded in step 1012 using one or more matched
templates. Message 901 may be decoded in step 1012 into
data 910 by applying all of the attributes (e.g., observable
attributes 908 and inferred attributes 909) from the chosen
template(s) 907 to the elements of message 901 (e.g., ele-
ments 902, 903, 904, and 905). In this manner, the pattern of
observable attributes 908 found in message 901 results in the
identification of a set of inferred attributes 909 by matching
the observable attributes 908 to templates in template library
906 that comprise both observable and inferred attributes.

All of these attributes, i.e., both observable attributes 908
and inferred attributes 909, are applied together to message
901 in step 1012 to generate a decoded message in step 1013.
For instance, the process in step 1012 for decoding element
902 of message 901 comprises applying the combined
observable attributes (e.g., attributes 911 and 912) and
inferred attributes (e.g., attributes 913) to element 902 to
produce data 914. The other elements of message 901 (i.e.,
elements 903, 904, and 905) may be decoded in a similar
manner.

Each type of attribute may imply or indicate its own form
oftransformation. As an illustrative, non-limiting example, in
the context of Oracle™ TTC protocol interpretation, some
examples of applicable attributes include the basic type of
data (e.g., string, numeric, date, interval, etc.), the acceptable
range of values, a specific value or bit pattern (e.g., an opera-
tion code), the dynamic range of a value (e.g., how many bits
are required to represent the full range of the value), how

US 9,185,125 B2

21

many padding bits may be included in a message and their
possible values and locations, the encoding of a value (e.g.,
endianness, character set, bit width, etc.), and/or the internal
structure of a value (e.g., simple array of characters with a
single length, groups of characters with a length field between
each one, etc.).

Some elements of a message may contain bulk data that is
not of interest. Thus, in an embodiment, the transformation
from element to data (e.g., from element 902 to data 914) in
step 1012 may involve eliding or omitting some or all of the
actual data, leaving only a description of the data (e.g., the
chosen attributes) for use in building a model. The bundling
mechanism (described in more detail elsewhere herein)
ensures that the high-level message boundaries are discern-
able, even if part of a message is skipped or omitted in this
fashion.

In an embodiment, template library 906, which is used to
decode a message, persists on a per-session basis. This allows
earlier messages in the session to inform the decoding of later
messages in a session. This feature may be particularly criti-
cal, for instance, in decoding messages in a session in which
the initial connection setup messages are missing.

While the embodiment illustrated in FIG. 6 uses a TNS
protocol interpreter 601 and TTC protocol interpreter 602, it
should be understood that different interpreters (e.g., for pro-
tocols other than TNS and/or TTC) may be used in addition to
or instead of the illustrated interpreters and/or a different
number of interpreters may be used (e.g., one, two, three,
four, etc.), depending on the particular protocol(s) being
interpreted.

In an embodiment, the data extracted from TNS protocol
interpreter 601 and/or TTC protocol interpreter 602 or, in
other contexts, from one or more other interpreters may be
passed to an operation filter 603. Operation filter 603 may use
application-level semantic datato filter operations that are not
of interest. Operations of interest or operations not of interest
may be defined or configured by a user. As an illustrative
example, the application-level semantic data may include a
service name for a database. For instance, two database
instances named CRMPROD and CRMDEYV may be present
on or otherwise available from the same server and use the
same TCP port (e.g., port 1521) for RPC traffic. A user may
specify that only operations involving CRMPROD are of
interest or that the operations involving CRMDEY are not of
interest. In either case, operation filter 603 may filter out
operations involving CRMDEYV from consideration prior to
analysis by model generator 604.

At any of'the interpreter or filter stages leading up to model
generator 604 (e.g., stages 601, 602, and/or 603), processing
of a bundle or group(s) of bundles in a session may be
deferred, leaving the bundle(s) queued until a new bundle or
event is received for the session. This mechanism may be used
when information from subsequent bundles may be needed
by any of the stages or modules to interpret earlier bundles.
For instance, TTC protocol interpreter 602 may use this queu-
ing mechanism to defer processing of undecodable messages
in a session until its template library is more refined or devel-
oped. In addition, model generator 604 may use this queuing
mechanism to retain bundles while attempting to determine
which side of a connection is the server and which side of the
connection is the client.

6. Semantic Traftfic Model

Referring again to FIG. 6, model generator 604 uses the
stream of data and events generated by one or more protocol
interpreters (e.g., TNS protocol interpreter 601 and TTC pro-
tocol interpreter 602)—and, in an embodiment, filtered by
operation filter 603—to build an abstracted semantic traffic

30

40

45

50

22

model 605 of the operations taking place between network
agent 102 and network agent 103. Model 605 may comprise
a sequence of verbs and backing data that pertains to a single
session (e.g., database session). Model 605 maintains a col-
lection of states for each session and transaction, and
describes the sequence of operations applied to that state.

Additional models, including multiple layers of models,
may be built from semantic traffic model 605, for example, by
detector 108. The details of these higher-level models may be
specific to the analysis engine built to use the data of model
605, and may vary based on the goals of the application which
will utilize model 605. In other words, different users may
build different higher-level models depending on the task at
hand. For example, for a security application, a higher-level
model may comprise structural and parametric data that
describe the normal behavior of an application and expose
outlying operations that may represent attacks. As another
example, for a performance application, the higher-level
model may comprise data describing the timing and size of
verbs and their parameters. As a further example, a database
firewall may build a higher-level model describing SQL state-
ments and execution semantics surrounding them. A web
application firewall (WAF) or WAF-like system may build a
higher-level model from model 605 that shows Uniform
Resource Identifiers (URIs) and POST parameters.

Model 605 may be built in main memory 205 and/or cache
memory 206, and written by file system driver 310 and stor-
age controller driver 311 (e.g., via memory controller 210,
bus controller 203, and storage controller 207) to persistent
storage device 209. Specifically, in an embodiment, the data
of model 605 (e.g., events and metadata) may be queued to
model log buffers 606, which may be written to persistent
storage device 209.

The data of model 605, queued in model log buffers 606,
may comprise a feed that is inputted into one side of an AP to
be used by the specific higher-level application (e.g., detector
108) providing the API to, for example, construct higher-level
models. For instance, for a security application, RPCs being
used in monitored sessions and the parameters used in the
RPCs, and/or SQL operations being used and the rows and
columns being modified by the SQL operations, may be pro-
vided from model 605 via model log bufters 606 to the secu-
rity application via an API defined by the security application.
For a performance application, the types of operations being
used in monitored sessions may be provided from model 605
via model log buffers 606 to the performance application via
an API defined by the performance application. Alternatively,
it should be understood that the capture-and-analysis mod-
ules 304 may define the API, and one or more applications
(e.g., detector 108 which may comprise security appli-
cation(s), performance application(s), and/or other types of
applications) may access the data of model 605 (e.g., stored in
model log buffers 606) via the API defined by capture-and-
analysis modules 304.

7. Variations

The disclosed systems and methods may be applied to any
application-level protocol that is session synchronous. Such
protocols include, without limitation, database client-server
protocols used by Oracle™, Microsoft™ SQL., Sybase™,
IBM™ DB2, PostgreSQL, MySQL, MongoDB, and other
databases. Such protocols also include non-database server
protocols, such as HTTP, HTTPS, Network File System
(NFS), Apple Filing Protocol (AFP), Server Message Block
(SMB), Domain Name System (DNS), Simple Mail Transfer
Protocol (SMTP), Internet Message Access Protocol (IMAP),
Post Office Protocol (POP), and custom or proprietary appli-
cation protocols. In addition, the application protocols may

US 9,185,125 B2

23

be carried over transport mechanisms other than TCP over IP
version 4 (IPv4), including, without limitation, User Data-
gram Protocol (UDP) over IPv4, UDP over IP version 6
(IPv6), TCP over IPv6, Remote Desktop Protocol (RDP) over
IPv4, Internetwork Packet Exchange/Sequenced Packet
Exchange (IPX/SPX), Internet Control Message Protocol
(ICMP) over IPv4, and ICMP over IPv6. The protocols may
be carried in any combination over Layer 2 bridges, Network
Address Translation (NAT) devices, Virtual Private Network
(VPN) tunnels, VLAN technologies, and in-memory inter-
process communication (IPC) arrangements on Non-Uni-
form Memory Access (NUMA) and Uniform Memory
Access (UMA) architectures.

The disclosed systems and methods may also be applied to
any packet-based or stream-based physical layers, including
arbitrary combinations of such layers within the same system.
These include physical transports over any supported media,
including, without limitation, Fiber Distributed Data Inter-
face (FDDI), Token Ring, 100-megabit Ethernet, 10-megabit
Ethernet over coaxial cables, 10-gigabit Ethernet, and Digital
Signal 1 (DS1)/Digital Signal 3 (DS3) signaling.

The disclosed systems and methods may utilize any cap-
ture mechanism that can make copies of the traffic between
network agents, and provide these copies to the disclosed
capture-and-analysis device 107 or modules 304. Such cap-
ture mechanisms include, without limitation, electrical-level
taps, MII proxy taps, a NAT device which routes traffic
between network agents and transparently captures the routed
traffic, a virtual SPAN or mirror facility that may be part of'a
Virtual Machine (VM) manager or hypervisor, a TCP or IPC
proxy running on any of the involved network agents, and
playback of previously captured traffic (e.g., log) from a
storage device.

The disclosed systems and methods are not limited to ana-
lyzing traffic and building models for a single pair of network
agents. Rather, the systems and methods are able to simulta-
neously monitor many sessions between many pairs of net-
work agents. Furthermore, traffic may be captured simulta-
neously from a plurality of capture mechanisms inreal time or
from a play-back. The systems and methods may differentiate
between network agents based on transport addresses, as well
as other attributes, such as MAC addresses, IP addresses, TCP
port numbers, VLLAN tags, application-layer-specific identi-
fiers (e.g., service name, SID for Oracle™ protocols, etc.),
and/or physical ingress port tags.

It should be understood that the capture-and-analysis
device 107 and/or mirror tap may be implemented entirely in
software executing in a VM environment. The components of
the system—including, without limitation, the capture
devices or mechanisms—may run in a distributed fashion on
a plurality of virtual or physical appliances and/or operating
system processes or drivers. Furthermore, the systems and
methods may be implemented on any operating system that
supports basic networking and file system capabilities. Alter-
natively, the systems and methods may be implemented on a
physical or virtual device without an operating system (e.g.,
incorporating required hardware drivers into an application,
which embodies the systems and methods, itself).

Different hardware architectures may act as the base for the
mirror tap or the capture-and-analysis device 107. These
architectures include, without limitation, multiple-CPU-core
systems and any supported network or storage peripherals
and controllers which support the performance requirements
of'the system. Any stored program or CPU architecture (e.g.,
Harvard CPU architecture) may support the disclosed sys-
tems and methods.

10

15

20

25

30

35

40

45

50

55

60

65

24

The reassembly and protocol decoding or interpretation
systems and methods described herein may be implemented
with different layering than described. For example, the Eth-
ernet, VL AN, IP, and/or TCP reassembly modules may be a
single module or entity, and may not support items such as IP
fragmentation or VLAN header parsing. The reassembler
may use control flags (e.g., ACK, “finish” (FIN), “reset”
(RST), etc.) to help determine message boundaries and other
exceptional conditions.

Semantic model 605 may be stored on persistent storage on
differing storage architectures. Such storage architectures
include, without limitation, network file systems, Storage
Area Network (SAN) storage, Redundant Array of Indepen-
dent Disks (RAID) storage, and/or flash memory. Alterna-
tively, model 605 may not be stored in persistent storage at all.
Rather, model 605 may be consumed by the ultimate, desti-
nation application (e.g., via an API) and discarded.

It should be understood that the destination application of
semantic model 605 may use model 605 of traffic to perform
other tasks than just those tasks discussed elsewhere herein.
Such tasks may include, without limitation, informing a block
proxy when to hold and when to release traffic flowing
through the capture-and-analysis device 107 so that it may act
similarly to an Intrusion Prevention System (IPS), and acting
as an application-level proxy and modifying or locally satis-
fying operations for performance or security purposes (e.g.,
to implement a database accelerator).

The disclosed systems and methods may handle extreme
conditions. Such conditions may include, without limitation,
aperfect plurality of traffic copies received due to the utilized
capture architecture, a perfect loss of traffic in one direction
between a pair of network agents, and new versions of appli-
cation protocols that are completely unspecified.

In an embodiment, there may be channels of communica-
tion which push data, notifications, indications, or other infor-
mation “backwards” down the analysis chain. Such channels
may include, without limitation, notification from the TTC
layer to the TNS layer regarding message boundaries or asyn-
chronous signal notifications, and/or messages from TNS
protocol interpreter 601 to bundler 508 and/or reassemblers
507 and/or 506 to eliminate the need for a timeout to deter-
mine the end of a message (e.g., a message to bundler 508 or
reassemblers 507 or 506 comprising an indication that the end
of the message has been determined). Such channels may be
implemented to allow modules (e.g., interpreters, filters, etc.),
further along the analysis chain, to “peek” at the data and
assist modules, earlier in the analysis chain. For example, this
assistance, provided by later modules to earlier modules in
the analysis chain, may comprise the determination of mes-
sage boundaries.

In an embodiment, during analysis, bundler 508 and/or one
or both of reassemblers 506 and 507 may elide blocks of data
that are of no use to the application layers. The elided data
may be significant in some instances, and may include, with-
out limitation, bulk row data and bind parameters. For
example, all data not required for an application at hand may
be elided or redacted. The data to be elided may be predeter-
mined (e.g., by user-defined parameters stored in a configu-
ration file). For instance, for a database firewall that is not
processing the contents of return row data, the application
may elide result row payloads and/or all parameter data.

In an embodiment, bundler 508 and/or one or both of
reassemblers 506 and 507 may implement a streaming pro-
tocol such that data is delivered to the protocol interpreters
without the need to buffer the data or completely buffer the
data.

US 9,185,125 B2

25

Attributes for protocol message elements, such as TTC
protocol message elements, may be inferred directly from
clues which are intrinsic to the message or from other clues.
These other clues may include, without limitation, known
architectures and/or version numbers of the network agents
involved in the interaction. For example, these architectures
and/or version numbers may be known via configuration or
caching of data from a previous message or session.

In embodiments, the search of attribute elements, such as
TTC attribute elements, may be elided for a subset of one or
more elements. For instance, in an embodiment, if clues pro-
vided from an earlier part of the connection establishment
protocol indicate that certain templates are not needed, they
may be excluded from consideration for performance rea-
sons. As an illustrative example, certain RPC structures may
never be used after a given version of an Oracle™ client
library. Thus, if the connection setup determines that a newer
library version is in use, the interpreters can refrain from
attempting to match any templates that solely support older
library versions. Additionally, the results of a search for
attribute elements may be cached to improve performance.

Generation of the per-session template library 906 may be
informed by the results of related sessions. For example, if a
template library is selected for a first connection from client A
to server B, this previously selected library may be reused as
a starting point for a second and subsequent connection from
client A to server B, since there may be a good chance that the
second connection is from the same application as the first
connection. Furthermore, protocol attribute templates may be
excluded or included in library 906 based on attributes out-
side of the immediate protocol messages, such as TNS pro-
tocol headers, configuration inputs (e.g., manually defined by
a user), IP header fields, rows or bind payload data, TCP
header fields, transport layer header fields, etc.

In an embodiment, additional or alternative heuristic meth-
ods, than those described elsewhere herein, may be used to
determine at least some of the attributes of the data elements
for a given message and/or a set of templates that are in the
scope of a particular session. For example, information
acquired from a session setup negotiation may be used to
directly determine one or more attributes. For instance, a
“book™ of templates for given server version numbers or
client library versions and server types may be used to provide
a starting point for the template library search. The time to
search all possible combinations of templates can be signifi-
cant. Thus, reducing the search space can be valuable, for
example, in terms of improving performance. In addition, the
disclosed bundling mechanism may be generalized and used
for other purposes than those described elsewhere herein. For
example, the bundling mechanism may be used to determine
semantics of TN'S marker messages, determine performance-
related statistics in the model builder, decode row data, char-
acterize row data, etc.

II. Modeling

In an embodiment, systems and methods are disclosed for
detecting and mitigating unauthorized access to structured
data storage or processing systems using network traffic. Inan
embodiment, the network traffic is received from or using the
systems and methods disclosed in the *579 Application and
discussed above.

The disclosed systems and methods are applicable to at
least systems in which some form of generated language is
combined with data passed in from potentially unauthorized
or compromised sources. This includes, without limitation,
SQL database servers using any dialect of SQL with or with-
out proprietary extensions (including, for example, embed-
ded relational databases), other database servers with a query

10

15

20

25

30

35

40

45

50

55

60

65

26

language component, and other services containing a control
language component mixed with user data, such as Light-
weight Directory Access Protocol (LDAP), HTTP, Hypertext
Markup Language (HTML), Simple Mail Transfer Protocol
(SMTP), Internet Message Access Protocol (IMAP), and Post
Office Protocol (POP).

1. System Overview

FIG. 13 is a functional block diagram which illustrates a
high-level overview of a system 1300 for detecting and miti-
gating threats to structured data storage and processing sys-
tems, according to an embodiment. The term “database fire-
wall,” as used herein, may refer to the entire system 1300 or
subsets of the components of system 1300. System 1300 may
comprise one or more servers or one or more processors that
execute the described modules and functions.

Initially, network traffic is captured and/or reassembled
with inline blocking by reassembly module 1305. As men-
tioned above, reassembly module 305 may be implemented
using the systems and methods disclosed in the *579 Appli-
cation and/or described herein. For example, reassembly
module 1305 may comprise the bundler(s) and/or inter-
preter(s) discussed above with respect to FIGS. 5 and/or 6. It
should be understood that reassembly module 1305 may itself
capture network traffic or may receive captured traffic net-
work from an external device or agent (e.g., the capture/
analysis device described above with respect to FIG. 4) for
reassembly.

The reassembled network traffic is received by one or more
database protocol interpreters 1310 (e.g., TNS protocol inter-
preter 601, TTC protocol interpreter 602, etc.). Database
protocol interpreter(s) 1310 parse the reassembled network
traffic, based on one or more database protocols, to identify
one or more raw database events. The one or more raw data-
base events are then provided by protocol interpreter(s) 1310
to semantic traffic model generator 1315.

Semantic traffic model generator 1315 uses the raw data-
base events produced by database protocol interpreter(s)
1310 to generate a semantic traffic model, which represents a
model of the network traffic captured by module 1305. In an
embodiment, the semantic traffic model comprises a series of
abstract representations of database server operations that
have been applied to the database. Each representation of an
operation in the semantic traffic model may identify a session,
user, database server, type of operation, and/or timing data
related to the operation. Semantic traffic model generator
1315 can provide inputs to a tally system 1345, log system
1350, learning system 1360, and/or master scorer system
1365, each of which is described in greater detail elsewhere
herein.

Events represented in the semantic traffic model are passed
by semantic traffic model generator 1315 through a language
processing module 1325 (also referred to herein as a “lan-
guage system”) that extracts lexical, syntactic, and semantic
data from the provided database operations (e.g., SQL state-
ments) using lexical analysis module 1330, syntactic analysis
module 1335, and semantic analysis module 1340, respec-
tively, each of which may be integral or external to language
system 1325. The marked-up traffic may then be written to a
wraparound log buffer and a summary system that keeps
statistics on similar events (e.g., tally system 1345 and/or log
system 1350).

In an embodiment, a plurality of scoring algorithms or
modules are used that each look at the semantic traffic from a
different perspective. Once sufficient traffic has been
observed and logged, learning module 1360 is able to present
a subset of the traffic to each of these scoring algorithms as
authorized traffic. In turn, each of these scoring algorithms

US 9,185,125 B2

27

can build a model of the traffic (in a learning phase of the
algorithm), according to its own perspective, for the subse-
quent grading or scoring of the traffic (in a scoring phase of
the algorithm), for example, by master scoring module 1365.
However, there may also be scoring algorithms that do not
require a learning phase (i.e., only comprising a scoring
phase), and can help detect unauthorized access even during
the learning period.

After the application traffic from a database has been
learned (e.g., during the learning phases of the scoring algo-
rithms discussed above), master scoring module 1365 (also
referred to herein as the “master scorer”) can use the scoring
algorithms to evaluate all or a portion of ongoing traffic. In an
embodiment, each of the scoring algorithms is utilized by
master scoring module 1365 to generate a set of facts that it
can discern about the traffic from its unique perspective and
the learned application behavior. Master scoring module
1365 can judge all of these facts, received from the various
analytical algorithms, to make a single threat determination
about each operation.

In an embodiment, if the threat determination for an event
(e.g., score calculated by the master scoring module 1365)
exceeds a threshold, the event is flagged. Each event may
contain forensic information supplied by all or a portion of the
analytical algorithms, details from the language system, and/
or the details of the semantic traffic model itself. Each event
may be logged into an internal database (e.g., by master
scorer 1365), such as event log 1380, for later examination
and/or signaled to an operator by an event notification module
1390 via a visual user interface 1395. Alternatively or addi-
tionally, each event can be sent (e.g., by event notification
module 1390) as one or more Syslog-compliant messages to
an operator-specified destination. Syslog is a standard for
computer message logging that permits separation of the
software that generates messages from the system(s) that
store, report, and/or analyze them.

Inan embodiment, visual operator interface 1395 allows an
operator to examine detailed forensics for all events, as well
as summaries and subsets of existing events and details of the
various analytical algorithms’ internal models. Operator
interface 1395 also provides for initiating learning and scor-
ing phases, as well as the ability to direct the analytical
algorithms to learn specific instances of operations (e.g., SQL
statements) that are authorized and/or unauthorized.

2. Transmission Control Protocol (TCP) Reassembly

Embodiments of TCP reassembly, which may be per-
formed, for example, by reassembly module 1305 in FIG. 13,
will now be described in detail. In an embodiment, the TCP
reassembly mechanism of reassembly module 1305 converts
collections of passively captured IP packets from a group of
capture sources into pairs of ordered and synchronized byte
streams. Each byte stream represents a unidirectional TCP
payload from one endpoint of a connection to the other end-
point of the connection.

The capture environment, described in the *579 Applica-
tion and above, may comprise one or more external agents
that passively “sniff” traffic between clients and servers (e.g.,
client 1130 and server 1110 of FIG. 11) on one or more
external networks and send a packet-by-packet copy of this
traffic to a monitoring device, such as system 1300. A com-
mon case, illustrated in FIG. 14, according to an embodiment,
is a passive network tap 1440 inserted between two hosts
1410 and 1430 with a high traffic load. Each direction of
traffic flow may be at the full capacity of link 1422 between
them. Thus, two links 1424 and 1426 may be required to send
the sniffed traffic to monitoring device 1450, which may be
the same as, part of, or provide input to system 1300.

10

15

20

25

30

35

40

45

50

55

60

65

28

In an embodiment, each collection of packets (a TCP
stream) within the sniffed traffic is identified in system 1300
by a tuple, such as (Realm, SourcelP, DestinationIP, Source-
Port, DestinationPort) or (Realm, Destinationlp, SourcelP,
DestinationPort, SourcePort). The SourcelP and Destina-
tionIP are the Ipv4 or IPv6 network node addresses for the
source host (e.g., Host A 1410) and destination host (e.g.,
Host B 1430), respectively. The SourcePort and Destination-
Port are the TCP port numbers for the source host and desti-
nation host, respectively, and the Realm is an identifier that is
mapped to from the tuple, such as (receive port identifier,
Virtual Local Area Network (VL AN) tag). Reassembly mod-
ule 1305 can simultaneously process as many TCP streams as
are present in the capture sources.

The application layer (or “monitoring application”) in
monitoring device 1450 receives the stream data for each
direction of the connection alternately with the direction
changeovers synchronized to match the behavior experienced
by the monitored hosts. For example, if Host A sent a message
AAA to Host B, and Host B, upon receipt of the message,
responded with message BBB, the application layer in moni-
toring device 1450 would see (Destination=B,
Message=AAA) followed by (Destination=A,
Message=BBB). These synchronization semantics at the
application layer will hold, regardless of the order of receipt
of packets at the capture layer.

Reassembly module 1305 can receive an arbitrarily
ordered collection of packets from a capture device (e.g.,
passive tap 1440, in an embodiment, via monitoring device
1450) and convert it into a group of synchronized streams.
The only exception is TCP “keepalive” packets, which dupli-
cate data in sequence space with a valid looking payload, e.g.,
a single byte that is not the last byte transmitted. If a keepalive
packet is seen before the last payload on its connection, the
stream data could appear corrupted. This situation does not
happen in a practical capture system, and may be further
mitigated with a heuristic check for this specific condition.

Reassembly module 1305 is able to perform reassembly,
even under the following conditions that are typically visible
to the monitored systems themselves: packets lost in either
direction, duplicated or partially duplicated packets, packets
received out of order, packets with no payload, packets with a
dummy payload (e.g., keepalive packets), and TCP attacks in
which invalid data are included in packet headers (e.g., per
RFC793 or any of the underlying protocol layers). (It should
be understood that references herein to “RFC” refers to the
Request for Comments published by the Internet Engineering
Task Force (IETF) and the Internet Society, which are the
principal technical development and standards-setting bodies
for the Internet.)

There are certain conditions that are unique to passive
capture:

(1) Batched traffic across two capture ports. The traffic for

a single TCP stream may be split between two capture
ports and batched so that a significant number of packets
are seen for one direction (i.e., on one capture source)
first, followed (i.e., on the other capture source) by the
responses to that traffic in a large group. Effectively, this
appears like out-of-order traffic on a grand scale, and
happens in the normal network-tap configuration due to
buffering and thread-scheduling latencies.

(2) Inaccurate capture timestamps. The timestamps on the
packets may not be useful for ordering packets received
on two interfaces, since buffering in the capture infra-
structure may occur before the timestamps are applied.

(3) Unidirectional traffic. A physical or virtual tap may be
set up so that only traffic going from one host to another

US 9,185,125 B2

29

is visible. The application layer of monitoring device
1450 can still do its job with only one side of the traffic
by filling in the missing pieces with blank traffic to
indicate protocol turnaround boundaries.

(4) Long periods of loss. A tap may be disconnected either
unidirectionally or bidirectionally for a long enough
time period that the TCP sequence numbers wrap. This
can be detected by monitoring device 1450. When
detected, monitoring device 1450 can resynchronize and
provide a regular feed to the application layer that indi-
cates the loss and resumption of data.

(5) Packets lost in capture. Isolated packets or groups of
packets may be lost in the capture chain in such a manner
that the loss is not visible to the monitored hosts. In this
case, the hosts will not retransmit their data. Monitoring
device 1450 can detect the loss and provide placeholder
data to the application layer.

(6) Missing start of connection or end of connection indi-
cations. The capture may be started after a new TCP
connection has been set up, or the tap may be disabled
before a TCP connection ends. Monitoring device 1450
can deliver data to the application layer as soon as it can
determine synchronization, even without seeing the nor-
mal startup handshake. Furthermore, the payload of all
traffic received before a capture tap is disabled can be
delivered to the application layer after a timeout, even
though no close-connection indication has been identi-
fied.

(7) Synchronization timing. In some instances, the appli-
cation layer of monitoring device 1450 may require
knowledge that, at some point in time, a host has
acknowledged receipt of data (e.g., with respect to other
connections). Thus, monitoring device 1450 may deliver
payload data to the application layer after the host
acknowledgement is known to have occurred.

Inan embodiment, TCP reassembly may operate by sorting
acollection of received packets with payload for a single TCP
session into two host queues, according to their starting
sequence number and order of reception. For example, there
may be one host queue for each of hosts 1410 and 1430
depicted in FIG. 14, wherein each queue represents one direc-
tion in a TCP session. Each queue can be associated with a
“push” sequence number and an “ACK” sequence number.
The push sequence number determines the highest sequence
number that has been delivered to the application layer in a
given direction, e.g., using IEN-74 sequence space math. (It
should be understood that references herein to “IEN” refer to
the Internet Experiment Notes from the series of technical
publications issued by the participants of the early develop-
ment work groups that created the precursors of the modern
Internet.) The ACK sequence number is the highest sequence
number that has been acknowledged by the host receiving the
data.

After adding packets to the appropriate host queue, an
attempt can be made to make forward progress on the con-
nection by pushing packets off of one of the queues to the
monitoring application. Packets that contain sequence space
between push sequence number and the ACK sequence num-
ber are candidates for such a push. However, packets may be
prevented from being pushed from a queue if one or more of
the following conditions are met: a sequence number gap
(i.e., missing the next in-sequence data for the direction rep-
resented by the queue), no receiver acknowledgement (i.e.,
the intended receiver of data has not yet acknowledged the
data), or no stream synchronization (the other side must
receive data before the side represented by the queue). In an
embodiment, mechanisms are provided that can force

10

15

20

25

30

35

40

45

50

55

60

65

30

progress, even without some conditions being met, in order to
handle packet-loss scenarios. In these embodiments, syn-
thetic “gap” packets can be generated to stand-in for the real
data and delivered to the application layer. Such mechanisms
are discussed in more detail elsewhere herein.

2.1. Intake Processing

FIG. 15 illustrates an example flow diagram for a TCP
reassembly process, according to an embodiment. This pro-
cess may be implemented by reassembly module 1305, illus-
trated in FIG. 13. In one embodiment, each of the actions
described in connection with the flow diagram of FIG. 15 is
carried out by reassembly module 1305. As discussed in the
’579 Application and above, packets may be received at cap-
ture sources 1502 A and 1502B, and merged into a single flow
of'packets on aninbound queue 1504. It should be understood
that capture sources 1502A and 1502B in FIG. 15 may cor-
respond to the capture sources in monitoring device 1450 in
FIG. 14, and that system 1300, which comprises reassembly
module 1305, may correspond to monitoring device 1450.

If there is no packet traffic pending in capture sources
1502A and 1502B, inbound queue 1504 may be processed.
On the other hand, if packet traffic is present in capture
sources 1502A and 1502B, it may be merged by reassembly
module 1305 onto the inbound queue until a predetermined
queue-size threshold (e.g., of 10,000 packets) is reached.
Once the queue-size threshold is reached, processing may be
forced. Such queue discipline can provide low latency when
traffic is light and low overhead when traffic is heavy.

In an embodiment, when inbound queue 1504 is processed,
all packets are removed from inbound queue 1504 and can be
placed in a temporary queue for filtering. Then, a TCP filter
1506 can be applied to all packets in the inbound queue to
identify only those packets which contain TCP payload or
control data. At this phase, all non-TCP packets can be dis-
carded or sent to other protocol processing or reassembly
systems or modules. In addition, relevant header information
can be parsed out of the Media Access Control (MAC), IP, and
TCP header fields of the identified TCP packets, leaving only
abstract control data and payload data in a skeletal packet
structure. These packets can then be placed in demultiplexing
queue 1508.

Demultiplexer module 1510 may process the packets in
demultiplexing queue 1508 each time the temporary queue of
TCP filter 1506 has been fully processed. Demultiplexer
module 1510 maintains a mapping between connection iden-
tifier tuples, discussed above, and state information. In an
embodiment, the state information comprises a connection
state structure or queue and two host state structures or
queues. The connection state structure comprises one or more
states related to the overall connection, and each of the two
host state structures comprises one or more states related to
traffic received by the associated one of the host endpoints of
the connection (e.g., host 1410 and 1430, respectively).

In an embodiment, packets are queued to a connection state
structure based on the mapping determined by demultiplexer
module 1510. Demultiplexer module 1510 also arranges for
regular timing packets to be queued to each state structure, as
well as control packets indicating a system shutdown or flush
of queues, if required. After all packets from demultiplexing
queue 1508 have been demultiplexed into connection queues
1512 by demultiplexer module 1510, demultiplexer module
1510 can initiate processing of all connection queues 1512
with packets in them. It should be understood that there may
be a plurality of connection queues 1512, each associated
with different connections between the same (e.g., Host A

US 9,185,125 B2

31
1410 and Host B 1430) or different host endpoints (e.g., Host
A 1410 and Host C (not shown), Host D (not shown) and Host
E (not shown), etc.).

2.2. Connection Intake Processing

Each time connection module 1516 is activated, it pro-
cesses all pending packets on inbound connection queue(s)
1512. Tick and control packets are handled as described
below. Captured packets can be provided to both host mod-
ules 1514 and 1518 associated with the connection as either a
“received” or a “sent” packet, depending on the side of the
connection that the particular host module is tracking. For
example, if a packet is sent from host 1410 to host 1430, that
packet can be provided to host module 1514 as a “sent” packet
and provided to host module 1518 as a “received” packet.

2.3. Host Intake Processing

In an embodiment, each connection module 1516 has two
host modules 1514 and 1518, one to track the state of each
side (i.e., direction) of the TCP connection. A host module
(e.g., either host module 1514 or 1518), provided with a
“sent” packet, can use the ACK in a packet to inform the host
state of the most recent (in time) received data. This can be
used to delay delivery until the receiver acknowledges the
data. It can be considered a “best effort” affair. When packet
data is not sorted well, this aspect of the algorithm may do no
good, but also does not harm. A host module provided with a
“received” packet that represents any sequence space (pay-
load, SYN, or FIN) sorts the packets onto the host module’s
queue by its starting sequence number and reception order.
For example, host module 1514 will sort packets into host
queue 1520, and host module 1518 will sort packets into host
queue 1524. Keepalives will appear as duplicate data to be
discarded.

2.4. Connection Push

In an embodiment, after each packet is presented to host
modules 1514 and 1518, each host module 1514 and 1518 is
then requested or otherwise caused to “push” its queue 1520
and 1524, respectively, to push queue 1522. For each side of
the connection, the host queue is processed (i.e., packets are
either discarded or delivered to application 1526) until a
packet is encountered which cannot be disposed of. Then the
other host queue is processed in a similar manner until a
packet is encountered which cannot be disposed of, at which
point the previous host queue is processed again, and so forth.
For example, host queue 1520 is processed until a packet is
encountered which cannot be disposed of, at which point host
queue 1524 is processed until a packet is encountered which
cannot be disposed of, at which point host queue 1520 is
processed again, and so forth. The host queues 1520 and 1524
are processed in this manner until neither queue has made
forward progress by discarding packets or delivering packets
to application 1526 or until both queues are empty.

In an embodiment, as the packets in host queues 1520 and
1524 are processed, a series of one or more tests are applied to
each packet. The test(s) determine whether the data should be
pushed to application 1526 (i.e., to the application layer),
discarded, and/or deferred. An example series of tests or rules
may comprise one or more of the following:

(1) Sequence space (data and control) that is before the

push sequence is discarded as duplicative.

(2) Sequence space in the queue in advance of the push
sequence is ignored but not discarded. This represents a
missing data situation.

(3) Sequence space in the queue that has not yet been
acknowledged by the host (i.e., is in advance of the ACK
sequence state) is ignored but not discarded.

(4) Sequence space thatis in advance of an ACK sent by the
host on the other side (i.e., determined by examining the

15

25

40

45

65

32

other host queue of the other direction) is ignored but not
discarded. This represents a situation in which data in
the other host queue must be pushed before this data can
be pushed, and is important to keeping the connection
synchronized.

Packets representing sequence space that passes the above
tests can be removed from the host queue and put in push
queue 1522. Once all push attempts have been completed and
no further progress has been made, application module 1526
is allowed to process the data in push queue 1522.

2.5. Forced Progress

During each attempt to push packets, a check can be per-
formed to determine if conditions exist to indicate that a
connection is stuck and will not make further progress by
deferring action. In an embodiment, such conditions may
comprise one or more of the following:

(1) Combined queue lengths exceed a reordering threshold.

(2) No packets have been received for the connection for a
threshold amount of time.

(3) The connection is being flushed.

(4) Traffic exists on both host queues that requires oppos-
ing traffic to be delivered first. For instance, this can
happen when there is a large packet loss or when cor-
rupted traffic (e.g., not meeting RFC793 specifications)
is received, e.g., due to hostile actions or other reasons.

In an embodiment, when any one or more of these condi-
tions are detected, each host queue 1514 and 1518 is pro-
cessed, and, if blocking conditions are met (e.g., missing
packet, no ACK), a synthetic gap packet is injected. The
injected gap packet simulates the missing traffic and allows
forward progress via the normal push mechanism. The gap
packet can be marked so that monitoring application 1526
knows that the packet contains no valid data and represents
missing sequence space.

If the sequence space on the host queues 1514 and 1518 is
significantly different than the current push sequence num-
bers, the connection has experienced a large packet loss,
perhaps wrapping the sequence space, and the push sequence
numbers on both side of the connection are jumped to just
before the valid traffic. Thus, application 1526 may see a gap
indicating missing data. In this case the size of that gap is a
small arbitrary number, since the actual gap size is unknown.
In an embodiment, packet arrival timestamps can be used to
estimate the size of the gap.

2.6. Ticks

In an embodiment, a count of packets received for a con-
nection is maintained. A tick packet is received approxi-
mately once per packet capture minute, which may be much
faster in real time if the capture source is a stored file of
packets. As each tick packet is received, the packet count at
the last tick is compared with the current packet count.

If there is no traffic, the time span represented by a tick is
considered idle. In an embodiment, if five capture time min-
utes (or other predetermined time) worth of idle ticks occur,
the connection may be flushed via the forced progress mecha-
nism. This acts as a failsafe for packet loss near the end of a
burst of activity on the connection.

In an additional embodiment, if thirty-six hours (or other
predetermined time) worth of idle ticks occur, the connection
is assumed to be abandoned and is flushed. Then application
1526 is notified that the connection is closed. This acts as a
resource preservation mechanism to prevent memory from
filling with connection state after large packet loss scenarios.

2.7. Flushing

In an embodiment, if a flush control packet is received by a
connection, a forced progress procedure is executed. This
causes any pending data in host queues 1514 and 1518 to be

US 9,185,125 B2

33

flushed immediately into push queue 1522 with appropriate
gaps as needed, since it is known a priori that no more traffic
will be coming down the pipeline to fill in any missing packets
for which host queues 1514 or 1518 may be waiting.

2.8. Monitoring Application

Monitoring application 1526—which may comprise, for

example, the Bundler in the *579 Application and described
above—may receive several notifications during the lifetime
of a connection. These notifications may include, for
example, that a new TCP connection has been identified, that
in-sequence payload or gap traffic has been added to push
queue 1522, and/or, that, when a TCP connection will no
longer receive traffic notifications, a TCP connection has
been closed (e.g., due to control packet activity or being idle).

2.9. Multiprocessing and Pipelining

In an embodiment, the mechanisms described above utilize

a series of queues between modules that allow multiple pro-
cessor cores to simultaneously handle the chain of captured
traffic.

3. Semantic Traffic Model

Embodiments of a semantic traffic model, which may be

generated, for example, by semantic traffic model generation
module 1315 in FIG. 13 and/or model generator 604 in FI1G.
6, will now be described in detail. It should be understood that
each of the actions described in this section may be performed
by semantic traffic model generation module 1315 (or model
generator 604, which may be one in the same). Semantic
traffic model generation module 1315 may also be referred to
herein as the feed system or simply the “feed.”” This feed
system 1315 receives, as input, raw data and events from
capture and reassembly system 1305, described above. In an
embodiment, feed system 1315 receives these events from the
underlying capture protocol systems (e.g., as described in the
*579 Application and above, and represented by reassembly
module 1305) as direct calls with parameter data. Examples
of received events may include, without limitation:

CONN_OPEN: indicates that a new client-to-server con-
nection has been detected and includes, as parameter
data, a client/server connection identifier tuple, an iden-
tifier of the original endpoint client that was connected to
(e.g., used in load-balanced database scenarios), and/or
an identifier of the service that was connected to (e.g.,
this maps to a specific instance of a monitored database,
and is possibly many-to-one).

CONN_CLOSE: indicates that a connection relationship
between client and server has been closed or otherwise
ended, and includes, as parameter data, a reference to the
connection.

SESS_OPEN: notification of a new session or login on an
existing connection, and includes, as parameter data, a
username and/or a reference to the connection.

SESS_CLOSE: notification that a session has been logged
out on an existing connection, and includes, as param-
eter data, a reference to the open session.

TASK_EXEC_DISPATCH: signals the start of a new
operation requested by the client to the server (requests
may be chained together so that this may be a repeat of
an earlier request), and includes, as parameter data, a
reference session on which the request takes place, a
reference to the first time that this request was issued, a
timestamp when the request was first detected, statistics
regarding rows, bytes, and transfers for this request
chain, SQL text of the operation, and/or parameters from
the client that modify the SQL operation.

TASK_EXEC_COMPLETE: signals the first response
from the database server back to the client for a request,
and includes, as parameter data, a reference to the open

10

20

25

30

35

40

45

50

55

60

65

34

session, a reference to the first request in the chain, a
reference to the current request being responded to, a
time (e.g., in milliseconds, nanoseconds, etc.) between
dispatch and response, and/or transfer statistics (e.g.,
row, bytes, and/or transfers).

TASK_ROWS: signals that an increment of data has been
transferred from the server to the client on behalf of a
request (e.g., used to provide rate information on long-
running requests that retrieve large amounts of data), and
includes, as parameter data, a reference to an open ses-
sion, a reference to the current request, a timestamp,
and/or transfer statistics (e.g., rows, bytes, and/or trans-
fers);

TASK_COMPLETE: signals the completion of a request,
and includes, as parameter data, a reference to an open
session, a reference to the first and current request in the
chain, total time spent servicing the request and
responses, and/or transfer statistics (e.g., rows, bytes,
and/or transfers).

In an embodiment, semantic traffic model generation mod-
ule 1315 uses a language system 1325, an internal database,
and several levels of caching to scan the input events and
convert them into an abstract model of the traffic and its
parameters. The output products may be cached at two major
levels:

(1) A checksum of the entirety of the SQL that was passed
in may be used as a cut-through cache that holds the
detailed results of lexical analysis and a reference to the
SQL template which contains the syntactic and semantic
analysis products. This cache can completely bypass
processing by language system 1325.

(2) A cache, indexed by SQL template identifier, which
caches the syntactic and semantic analysis. Hits in this
cache bypass the parsing and semantic analysis portions
of language system 1325. However, lexical analysis is
still performed. Specifically, the lexical analysis may be
performed to compute a structural signature which
uniquely and compactly identifies the structural aspects
of any SQL statement, ignoring non-structural differ-
ences including literal and bind value. This structural
signature may be used to generate a unique, persistent
SQL statement representation, which is referred to in
FIG. 16 as the “id_" field of the “SqlStatement” entity.

In an embodiment, semantic traffic model generation mod-
ule 1315 collapses redundant data into identifiers in an inter-
nal database and shared objects in runtime memory. The
output of semantic traffic model generation module 1315 may
be a set of in-core state structures that represent the environ-
ment of the request and a set of event notifications to the
modules being fed (e.g., statistics or tally module 1345, log-
ging module 1350, learning module 1360, and/or scoring
module 1365).

FIG. 16 illustrates some example in-core state structures
that represent the environment of the request, according to an
embodiment. Specifically, FIG. 16 shows the example in-
memory state, as well as the relationships and arity of that
state, for the metadata surrounding connections of an embodi-
ment.

FIG. 17 illustrates an example set of event notifications,
according to an embodiment. Specifically, FIG. 17 shows the
state transitions on a single connection, and describes the
interface from the perspective of the application. The calls
between states are the semantic actions spoken of above. In
addition, the structure shown in FIG. 17 (along with the
metadata in FIG. 16) describe the semantic model upon which

US 9,185,125 B2

35

the semantic actions act. Important contract restrictions
across the semantic model API are shown in FIG. 17, accord-
ing to an embodiment.

4. Language Parsing and Templates

Embodiments of language parsing and templates, which
may be performed and utilized, for example, by language and
semantics module 1325 and/or analysis modules 1330, 1335,
and 1340 in FIG. 13, will now be described in detail. The
language processing system, which may encompass modules
1325, 1330, 1335, and 1340, may be referred to herein simply
as language system 1325. It should be understood that each of
the actions described in this section may be carried out by
language system 1325. In an embodiment, language system
1325 analyzes statements (e.g., SQL text) in operations for a
request and generates feed byproducts that can be used, for
example, by tally module 1345, logging module 1350, learn-
ing module 1360, algorithm learning subsystems 1370, algo-
rithm scoring subsystems 1375, and/or scoring module 1365.
In an embodiment, these byproducts may comprise:

(1) a semantic signature that identifies the statement as
similar to others and assigns it to a template identifier.
This signature has the property that two SQL statements
compute to the same semantic signature if, and only if,
they are substantially identical, ignoring all SQL aspects
except literal and bind variable values. In an embodi-
ment, new statement templates are generated as needed,
and stored persistently within an internal database.

(2) a lexical analysis of the statement.

(3) a syntactic analysis of the statement.

(4) a semantic analysis of the statement.

4.1. Operation Overview

In an embodiment, language system 1325 analyzes the text
of structured data-access commands from lexical and syntac-
tic points-of-view to produce a sequence of discrete tokens
and a parse tree, respectively. The semantics of parse trees
may be further analyzed in multiple domain-specific ways
with a shared semantic analyzer 1340, which computes
higher-level semantic properties by analyzing parse trees.
Language system 1325 may include multiple instances suited
for analyzing a plurality of structured data-access languages
and their variants, each producing tokens and a parse tree
from a shared set of tokens and parse tree nodes. A specific
instance of language system 1325 can be invoked by feed
system 1315 with a particular input (e.g., text, such as SQL
text).

In an embodiment, language system 1325 provides a com-
mon framework for lexically and syntactically analyzing
multiple structural data-access languages, with regular
expression-based lexical grammars, and Look-Ahead LR (1)
parse grammars shared between non-trivially varying dia-
lects via term-rewrite expansion. Both lexical tokens and
parser productions for a set of dialects may be represented via
completely shared data-type definitions. This vastly simpli-
fies clients by abstracting dialect variation. Semantic analysis
may be entirely within the shared domain of parse-tree nodes,
and vastly simplified by a top-down, pre-order analysis over
homomorphic data types representing parse nodes and parent
context.

4.2. Lexical Analyzer

In an embodiment, lexical analyzer 1330 maps input text
from multiple structured-data-access languages to sequences
of tokens from a fixed, shared set of contructs. This frees
abstraction clients from the lexical details of language vari-
ants.

4.2.1. Shared Tokens

The concrete tokens used by instances of lexical analyzer
1330 may be generated by language system 1325 from a

20

25

30

35

40

45

60

65

36

shared set of token definitions, with rewrites executed, for
example, by the m4 macro processor (an open-source tool),
which may form a part of language system 1325. For each of
the recognized tokens (e.g., of which, in a current implemen-
tation, there are four-hundred-eighty-three), the shared defi-
nition may comprise:

(1) Token name: a descriptive mnemonic.

(2) Semantic value: parametric data for the token (e.g., of a
Standard ML (SML) type, which is a well-known gen-
eral-purpose, modular, functional programming lan-
guage with compile-time type checking and type infer-
ence).

(3) Token class: classifies tokens (e.g., as one of “syn-
thetic,” “keyword,” “self,” “special,” or “dummy”).

(4) Token scope: if defined, a bit-mask identifying those
structured data-access language variants supporting the
token (e.g., variants may include postgreSQL, Oracle™,
and Microsoft™ SQL Server™ SQL dialects).

The shared token definitions may be rescanned in domain-
specific ways by the lexical and syntactic grammars and
supporting SML components described below.

4.2.2. Shared Lexical Analyzer Specification

In an embodiment, language system 1325 generates con-
crete lexical analyzers 1330 (also referred to herein as “lex-
ers”) for language variants based on a single shared specifi-
cation. This shared specification may be pre-processed by the
m4 macro preprocessor to produce concrete lexical analyzer
specifications corresponding to the grammar required by, for
example, the ml-ulex lexical analyzer generator (an open-
source tool). The macro definitions within the shared speci-
fication expand to handle the lexical analysis of the supported
language variants while maximizing specification sharing
between variants.

In an embodiment, the shared specification comprises one
or more of the following major elements:

(1) Shared definitions: SML code that defines data types

and functions supporting the rules below.

(2) Analyzer states: rules are specialized for multiple lexer
states, which, in an embodiment, may include one or
more of the following: b-quote, block comment, double-
quoted text, Xx-quote, e-quote, single-quoted text, dollar-
quote, bracket-quote, and/or unrepresentable Unicode
(e.g., input texts are UTF-8, but with ASCII nulls and
unrepresentable characters quoted).

(3) Run-time argument: specifies run-time variables and
properties specializing the lexical analysis, and may
comprise, in an embodiment, one or more of the follow-
ing: comment depth, accumulated sub-strings (for a par-
ticular lexical state), Boolean indicating whether strings
conform to the ANSI standard, Boolean indicating
whether high-bit encoding ASCII was seen in a lexical
context, Boolean indicating whether a backslash quote
was seen, start position of dollar quote, Boolean indicat-
ing client-side encoding, current number of literal values
seen (lexical analysis provides custom enumeration of
literal value positions for various detection algorithms),
and/or current number of escaped errors.

(4) Regular expressions: regular expression(s) defining
shared and language-variant-dependent token recogniz-
ers, which target ml-ulex’s regular expression syntax
and may be used by the rules below.

(5) Rules: m4 macros expanding to ml-ulex production
rules which define the semantics of the ml-ulex-gener-
ated lexical analyzer. In a current implementation, there
are sixty specific rules in the shared specification before
macro expansion.

US 9,185,125 B2

37

4.2.3. Shared Token Representation

In an embodiment, all clients of the token-sequence
abstraction, above the generated concrete parsers of lexical
analyzer 1330, utilize a single shared token representation
generated, for example, by m4 macro expansion of a single
file to produce an SML structure “SQLLex”. Aspects of the
specification for the shared token representation may com-
prise one or more of the following:

(1) a data type “lexeme”: a set of token types (e.g., four-
hundred-eighty-three token types in a current imple-
mentation) as SML zero-arity constructors (mapping
one-to-one with the shared tokens above).

(2) a generic enumeration type defining the following func-
tions over the generic lexemes:

(a) ordinal: maps to a zero-based ordinal.

(b) string: maps to a descriptive string.

(c) value: constructs a data type from an ordinal.

(d) cardinality: the cardinality of the enumeration (equal
to the number of lexemes).

(3) a function “lexemeType”: maps lexeme to lexeme type
(corresponding to the token classes above, defined with
a generic enumeration).

(4) a predicate “isLiteral”: indicates which tokens repre-
sent structured data-access literals in the sense of the
DS4 detection algorithm discussed elsewhere herein.

(5) a dialect zero-arity datatype “dialect”: comprises one
element for each supported dialect and associated enu-
meration.

(6) a lexical statement class zero-arity data type “stmt-
Class”: indicates the top-level classification of a struc-
tured data-access language construct and associated
enumeration.

(7) alexical statement type datatype “stmtType” with asso-
ciated enumeration representing the concrete language
statement type.

(8) a function “typeClass™: maps statement type to class.

(9) a function “estimateType”: accumulates a purely lexi-
cal estimate of a statement’s type, given some improper
subset of an input statement’s lexeme sequence. This
estimate is a best-effort mechanism capable of providing
putative statement types even for statements which ulti-
mately fail syntactic analysis.

(10) a function “keywordSql”: partially maps lexemes to
associated SQL keywords, depending upon the concrete
language variant generating the lexme (and thereby
ignoring keywords that are not defined for the variant).

(11) a function “selfSql”: defines self-describing ASCII
characters for a particular language variant.

(12) a number of functions and supporting types and data
types which accumulate a semantic signature of a state-
ment based on its lexical analysis. This signature
depends on all statement tokens except specific literal
values (but does depend upon literal lexeme type), and
may utilize openSSL (an open-source tool) MDS5 func-
tionality.

(13) a number of functions and supporting types/data types
representing lexical errors as lexical tokens for non-
parser clients.

4.2.4. Generator

In an embodiment, concrete instances of lexical analyzer

1330 are generated by language system 1325 from the com-
mon specifications (e.g., via m4-pre-processing) for a plural-
ity of language variants or dialects (e.g., postgreSQL,
Oracle™, and Microsoft™ SQL Server™ language variants).
The open-source ml-ulex tool may be used to generate near-

10

15

25

30

35

40

45

50

55

60

65

38

optimal Deterministic Finite Automatons (DFAs) which
implement the lexical analyzers for each supported structured
data-access language variant.

4.3. Syntactic Analyzer

In an embodiment, syntactic analyzer 1335 maps token
sequences to valid concrete parse trees (e.g., represented as
parse nodes) or a syntactic error indication, based on detailed
syntax rules of each supported structured data-access lan-
guage variant.

4.3.1. Lexical Gateway

In an embodiment, parser instances may be generated by
language system 1325 from context-free, Look-Ahead LR (1)
grammars. However, not all supported structured data-access
language variants may be capable of being fully represented
this way (e.g., Microsoft™ SQL Server™). A lexical gateway
may be used to augment the token sequence emitted by lexical
analyzer 1330 (e.g., with a single token of look-ahead) with a
semantically equivalent stream modified as follows, to allow
for strict LALR (1) parsing:

(1) Composition: two token sequences are mapped to
single composite tokens as illustrated in the following
table:

Token 1 Token 2 Composite

NULLS FIRST NULLS__FIRST
NULLS LAST NULLS_LAST
WITH CASCADED WITH_CASCADED
WITH LOCAL WITH_LOCAL
WITH CHECK WITH _CHECK
SEMICOLON (MS ICONST MODULE_NUMBER

SQL Server ™)

(2) Synthetic statement separator: some language variants
(e.g., Microsoft™ SQL Server™) support composite
statements which chain together multiple SQL state-
ments with no intervening punctuation whatsoever. This
is a decidedly non-LALR (1) construct, which can be
handled in the gateway by emitting synthetic
CSTMT_SEP tokens immediately before selected
tokens which can begin SQL statements (e.g., SELECT,
INSERT, UPDATE, DELETE, ALTER, EXEC,
EXECUTE, BEGIN, UPDATETEXT, SET, IF, and
COMMIT) when within the appropriate context.

4.3.2. Shared Parser Grammar

In an embodiment, language system 1325 implements dis-

tinct grammars for the mlyacc open-source tool by expanding
m4 macros from a single, shared grammar file which maxi-
mizes shared definitions across all supported concrete struc-
tured data-access language variants. The specification for the
distinct grammars may comprise the following major sec-
tions:

(1) Common declarations: a number of useful data types
and functions.

(2) Terminals: the mlyacc tool generates token definitions,
which may be generated inline from the shared tokens
discussed above.

(3) Precedence rules: conditionally defined precedence
rules supporting the detailed syntax of supported lan-
guage variants.

(4) Non-terminals: a number of non-terminals (e.g., two-
hundred-fifty in a current implementation) that are uti-
lized by the productions below to describe each sup-
ported language variant (e.g., by macro m4 macro
expansion).

(5) Productions: define all of the syntactic productions of
each supported language variant (e.g., about two-thou-

US 9,185,125 B2

39

sand-three-hundred source lines of required productions

in a current implementation). The semantic actions for

each production produce the common parse-tree nodes
discussed below.

4.3.3. Shared Parse Tree Node Representation

In an embodiment, all of the productions from the gener-

ated grammars produce concrete parse-tree nodes (generally,
fully information-preserving nodes) that are common to each
of'the structured data-access language variants. Generally, the
common parse tree representation and other functionality free
the parser clients from having to know the details of each of
the language variants. Key aspects of this SML specification
may comprise, for example:

(1) Data types and functions representing the complete set
of parse errors which can be detected by the concrete
parsers.

(2) Lexical and parse exceptions used upon parse failures
(or lexical failures for parse actions described below).

(3) A common set of lexical and parse error codes for
reporting to the functional and imperative client layers.

(4) Concrete SML types, data types, and enumerations for
each kind of parse node. There is no state actually com-
mon to each node. Nodes are completely independent
from each other and represent specific constructs across
all of the language variants. Ultimately, top-level state-
ments in the supported language variants may be repre-
sented as polymorphic variants of the SML data type
“statement”.

(5) A function “stmtType” mapping “statement” to “stmt-
Type” (and associated enumeration) discussed above.
This is the parser’s determination of a statement type,
perhaps, estimated by the lexer.

(6) Utility constructor functions used by the productions of
the grammars to instantiate parse tree nodes.

4.3.4. Generator

In an embodiment, concrete instances of the parser are

generated from the above m4-expanded specifications, by the
open-source mlyacc tool, for each language variant. The
resulting parsers will vary by language variant, but the num-
ber of generated table entries, in a current implementation, is
in the range of twenty-five thousand.

4.4. Functional Interface

In an embodiment, all functional (SML-level) clients of the

lexer and parser utilize an interface comprising one or more of
the following:

(1) The shared lexical tokens discussed above.

(2) The shared concrete parse-tree nodes discussed above.

(3) An implementation of a lexing/parsing interface
defined as:

(a) Token function: a client-defined token function
called to enumerate the token sequence with the fol-
lowing arguments: (i) token: as defined above; (ii)
UTF8 substring from the input text (representing the
full extent of the token); and/or (iii) a string option
providing the canonical representation of certain
token semantic values (for those that have canonical
representations); and/or (iv) a user-defined accumu-
lator value of a user-defined type. The client-defined
token function returns an accumulated value of the
same type as above.

(b) Lex function: lexically analyzes a UTF8-encoded
text string (itself encoding ASCII null and non-legal
Unicode character sequences with an information
preserving transform) with the following arguments:
(1) the concrete dialect of the structured data-access
language variant to be applied; (ii) a client-specified
token function (as above); (iii) UTF8-encoded text to

10

15

20

25

30

35

40

45

50

55

65

40

be analyzed; and/or (iv) the initial value passed to the
token function and accumulated across all lexical
tokens. This function returns a result indicating suc-
cess or failure of lexical analysis and the accumulated
value above;

(c) Parse function: lexically analyzes and parses a
UTF8-encoded text with the following arguments: (i)
a concrete language dialect as above; and/or (ii) the
UTF8-encoded text to be lexically and syntactically
analyzed. This function returns a parse result convey-
ing the root node of the generated parse tree, or an
error indication upon parse failure

4.5. Semantic Analyzer

In an embodiment, the parse tree, represented by the shared

parse nodes discussed above, is completely polymorphic with
essentially no commonality. Clients of the parse tree can
perform semantic analysis which can be accomplished via a
context-accumulating traversal through the nodes of the parse
tree.

4.5.1. Generic Parse Tree Traverser

Much of the work associated with various domain-specific

semantic analyzers 1340 may be accomplished in a common
node representation/traversal framework, which essentially
transforms concrete parse-tree nodes into a depth-first, pre-
order traversal through an Abstract Syntax Tree (AST) that is
isomorphic to the parse tree generated above from structured
data-access language-variant-specific strings. In an embodi-
ment, such a traverser may utilize the following elements:

(1) data type “parseNode™: the polymorphic parse-tree
nodes discussed above are mapped, one-to-one, into a
single SML data type with a number of variants (e.g.,
one-hundred-twenty in a current implementation) rep-
resenting the abstract syntax of the original structured
data-access language statements.

(2) data type “context”: the context of each AST data type
may be represented by a single SML data type with a
number of distinct variants (e.g., sixty-nine in a current
implementation).

(3) type “visitor”: the accumulating state of a depth-first,
pre-order traversal of the AST is built by client-defined
functions, corresponding to this function type, with one
or more of the following arguments: (a) a “parseNode”;
(b) the context of the “parseNode” within its parent
node; (c) a total accumulation of a client-defined type,
recursively built across all of the depth-first, pre-order
nodes of the AST; and/or (d) a parent accumulation of
arbitrary type, built up solely by callbacks to the ances-
tor(s) of “parseNode”. The “visitor” function may return
a tuple comprising: (a) a Boolean indicating that the
children of parseNode are to be recursively traversed; (b)
the total accumulation, given the above input; and/or (c)
the parent accumulation, given the above input.

(4) function “foldParseNode™: performs the depth-first,
pre-order traversal with one or more of the following
arguments: (a) visitor; (b) initial total accumulation; (c)
initial parent accumulation; and/or (d) parseNode. This
function returns the final total accumulation value.

(5) function “foldStatement™: exactly like the foldParse-
Node function, except that it takes a concrete parse-tree
root-statement object.

4.5.2. Doman-Specific Analyzers

In an embodiment, a plurality of domain-specific semantic

analyzers 1340 may be implemented. Each of the domain-
specific semantic analyzers 1340 may carry out one or more
specific functions. Furthermore, each semantic analyzer 1340

US 9,185,125 B2

41

may be built using the traversal framework described above,
and may comprise or utilize one or more of the following
functions:

(1) function “foldLikeL iterals™: this function recursively
analyzes the AST associated with a given statement (as
above), using the depth-first, pre-order framework, call-
ing back a user-defined function with each “SQLAux.a-
Const” node syntactically within the context of an SQL
“LIKE” operator. It may do this by maintaining a parent
stack of “LIKE” applications (particular, differentiated
parser conventions on the names of “SQLAux.aExpr”
objects of kind AEXPR_OP), and calling back a user-
specified function for each embedded “SQLAux.a-
Const” node. This may be utilized by the parametric
detection DP14 algorithm 1980.

(2) function “foldFuncCallLiterals™: this function recur-
sively analyzes the AST associated with a given state-
ment, calling back a pair of functions in the context of
function-call applications and literal constants within
the context of these applications, respectively. It may do
this by traversing the AST (as above), building a stack of
function-call evaluation contexts and a stack of
“SQLAux.aConst” evaluations, within the function-ar-
gument application contexts, and calling back the user-
defined functions with these stacks.

(3) function “foldRecursiveSqlLiterals”: this function ana-
lyzes the AST associated with a given statement, evalu-
ating a user-specified callback function for each string
literal, expected by the semantics of the associated struc-
tural data-access language variant, to itself convey text
in the same language variant (i.e., recursively). The cur-
rent implementation recurses the AST as above, filtering
for SQL Server™’s explicit or implicit EXEC and
EXECUTE statements for the set of recursive stored
procedure applications taking SQL literal arguments,
and calling the user-defined functions within such con-
texts.

4.6. Imperative Interface

In an embodiment, the bulk of language system 1325 is
implemented in SML, and compiled to executables or
dynamic libraries with the MLton open-source tool. SML
clients of this functionality may simply call it directly. How-
ever, many clients within the disclosed database firewall may
be written in the C, C++, or other imperative programming
languages. Additionally, the semantics of the code generated
by MLton are single-threaded, while the database firewall
may be heavily multi-threaded. Accordingly, in an embodi-
ment, a generic multi-threaded SML entry point framework
may be provided to resolve these issues. This framework may
be provided with an imperative interface to language system
1325.

4.6.1. Multi-Threaded Entry Point Code Generator

In an embodiment, the code generator is a build-time tool
which maps general SML-level interfaces to corresponding
entry points (e.g., C++ entry points). This provides the nec-
essary utility code to ease integration (e.g., with non-SML.-
based systems).

The entry point code generator may be driven by a declara-
tive specification. This specification may comprise the fol-
lowing Extended Backus-Naur Form (EBNF) grammar,
which specifies a mapping between SML functionality and,
as an example, C++ entry points:

interface := ‘interface’ ident ‘{’ types entrypoints map }’
ident := string c-compatible identifier

10

15

20

25

30

35

40

45

50

55

42

-continued

types := ‘types” *{” [typelist] *}"

typelist :=type [*, typelist |

type := typeName *{" pairlist *}’

typeName := ident

pairlist := pair [*, pairlist]

pair := ‘smlType’ ‘=" ident

‘smlReify’ ‘=" ident

‘smlAbstract” ‘=" ident

‘eppType’ ‘=" ident | dgstring

‘epplncludes’ ‘=" *[* [eppIncludesList]]’

‘eppReify’ ‘=" ident

‘cppAbstract’ ‘=" ident

dgstring := *“’ chars

chars = ([*] | V") *

cpplncludesList = dgstring [, cppIncludesList]

entrypoints := ‘entrypoints’ *{’ eplist ‘}’

eplist = entrypoint [, eplist]

entrypoint := ident *:* args return [raisesClause]

args := argList | “unit’

arglist := eType [** arglist]

eType := primType | stringType | jsonType | extType | refType |

arrayType | vectorType

primType := “bool’ | “char’ | “int8’ | “int16’ | ‘int32’ | “int64” |
‘int” | “pointer” | ‘real32’ | ‘real64’ | ‘real” | *word8” |
‘word16” | *word32” | ‘word64” | *word’

stringType := ‘string’

jsonType := ‘json’

extType = typeName

refType = primType ‘ref”

arrayType := primType ‘array’

vectorType := primType ‘vector’

return := ‘->" (eType | ‘unit’)

raisesClause := ‘raises’ *:” *{* exn [, exn]* ‘}

exn : ident

map := ‘map’ ‘{" [mapList] ‘}’

mapList := mapPair [, mapList]

mapPair := mapKey ‘=" ident

mapKey := ‘struct’ | ‘namespace’ | “interface’

)

Copyright 2013 DB Networks.

In an embodiment, the entry point code generator pro-
cesses input files satisfying the above grammar, and produces
one or more instances of a language-specific library (e.g.,
C++ library) that implements the interface. This makes it very
simple for programs (e.g., C++ programs) to utilize (e.g., call)
the SML functionality.

While the code generated by the MLton open-source tool is
single-threaded (with respect to kernel threads), multiple
instances of SML functionality and the run-time code gener-
ated above can be linked into a multi-threaded program (e.g.,
C++ program). This allows parallel SML execution. Accord-
ingly, in an embodiment, run-time support and library func-
tionality (e.g., C++ library) is provided to implicitly or explic-
itly select a specific instance of the generated code and related
SML dynamic library for safe parallel use from another lan-
guage (e.g., C++), thereby allowing multi-instance run time.
In an embodiment, this interface (e.g., C++ interface) may
comprise one or more of the following basic elements:

(1) class “Interface™: represents a particular interface gen-
erated from the above specification, and may have the
following public functions:

(a) function “name”: returns the name of the interface.

(b) generated functions: a function that is isomorphic to
each entry point described in the declarative specifi-
cation and is generated by the code generator.

(2) class “Library”: provides a lockable interface to a
specfic instance of a library implementing one or more
interfaces per the above specification. It may have the
following public functions:

US 9,185,125 B2

43

(a) function “instance”: returns a unique instance ordinal
of the library.

(b) function “isActive”: predicate indicating whether the
library is currently locked for use by some thread

44

-continued

Sql statement type ordinal resulting from the parse is returned
in stmtT. The function returns a status code, and should never
raise an exception. On success, 0 is returned, otherwise

(e.g., C++ thl‘ead). 5 error codes are per SQLAux.errorOrdinal(), which is parallel with
(C) function “manager”: returns the manager (below) SqlStatement::ParseResult. On error, peLen and peStr are
that controls this instance analogous
X . . to leLen and leStr, above. *)
(d) interface “functions™: a generated accessor for each parse : word * word * string * word ref * pointer * word ref —>
entry point implemented by the library. 0 El}*tth L be Lots of S lkers beyond here *)
< ». : ere will be lots of parser-intensive walkers beyond here
(3) class “Manager”: provides management for all of the (* uint8_t* foldLikeLiterals(uint32_t sqlld, flitCB f, uint8_t
available instances of a concrete library, and may *ctxlnit);
include the following public functions: Fold a function f of the form:
(a) function “poll”: non-blocking call to activate an arbi- uints_t* (*fitCB) (uint32_t likeT, uint32_t lidx, uints_* ofx);
. h . over the parse tree associated with sqlld, where ctxInit is an
trary hbrary , and return null if none are available. 15 initial, arbitrary state object, likeT is an ordinal in the XXX
(b) function “take”: like “poll”, but blocks for availabil- enum, lidx is the offset of the associated literal (in the
lty context of the pattern argument to SQL LIKE (and related
(C) function “use”: like “take”, but provides a lexically- functions)), and ctx is thel accmmlllated state object. Retums the
. . final value of the state object. Raises UnknownSqlId if sqlId
spoped context which automatlcally frees the taken doesn’t match a previously parsed/cached statement, or, fails
hbrary when destroyed. 20 efi:SqlStatement::get(sqlld) if not yet cached. *)
(d) function “release”: returns a library to the managed foldLikeLiterals : word * pointer * pointer —> pointer
pOOl. raises : {UnknownSqlld, LexError, ParseError},
(* uint8_t* foldFuncCallLiterals(uint32_t sqlld, fecCreate

4.6.2. Langl%age SySte.m C++ Interface create, fccAdd add, fclitFCB f, fclitACB, uint8_t* ctx);

In an embodiment, an interface to the SML-based language Fold the functions, fclitFCB, and fclitACB of the forms:
system described above is provided. This interface may cor- 25 uint8_t* (*fcFCB) (uint8_t *fcc, const uint8_t *fName, word
respond to the following code-generator specification: NameSz, uint8_t* cfx);

where fce is is a stack context (below), funcName is the name of
a function application (which may or may not involve arguments,
and ctx is a user-defined accumulating context, and:
interface sqlParserI { uint8_t* (*fcACB) (uint8_t *fcc, uint32_t lidx, uint8_t *ctx);
types { } where lidx is the application of a literal at index lidx in the
entrypoints { 30 lexical sequence of the statement’s literal values, to the top
(* int32_t lexSsq (uint32_t dialect, ssq *sql, lexCB_t lexCB, element of the stack context ctx,
uint8_t **ctx, bool litsOnly, uint8_t *digest, uint32_t *leLen, The stack context for the above calls is built by exactly one
uint8_t *leStr, call to feeCreate, and one or more calls to fccAdd. The first:
uint32_t *stmtT) uint8_t* (*fccCreate) (uint8_t **ctx);
Lex the given statement, in the given dialect (an ordinal of the Initializes a user-defined context, returned by the function. On
XXX enum) calling the lexical callback lexCB of the form: 35 entry *ctx is the accumulation context (above), which is also
uint8 t* (lexCB_t*) (uint32_t lexT, int32_t isLit, uint32_t returned as *ctx. This call returns an opaque stack context
offset, uint32_t len, uint32_t clen, uint8_t *cstr, uint8_t passed to the above two functions. The second stack building call
*ctx); is:
where lexT is an ordinal of the XXX enum, isLit is non-zero if void (*feccAdd) (uint®_t *fcc, uint8 t **ctx, const uint8_t
the lexeme represents a literal, offset and len provide the *{Name, uint32_t {fNameSz, uint32_t aidx);
offset and length of the lexeme within sql, clen and cstr provide 40 where fcc is a context created by fccCreate, ctx is an in-out
the length and data for a canonical string representing the accumulation context as above, funcName is a represents a
lexeme’s value (if clen is zero, then thee lexme *has* no function invocation (previously the subject of a fcFCB callback),
canonical value), and ctx is an application-defined opaque and aidx represents an ordinal in the argument spectra of this
context, initially *ctx, but repeatedly “accumulated” returned in function application.
*ctx (best effort -- includes the effect of all successfully ctx is the initial value of the user-defined accumulation
recognized lexemes). If litsOnly is non-zero, only callbacks will context. The call returns the final value of this accumulation.
be made for literal lexemes, only. Digest is a caller-allocated 45 *)
MD35, 128-bit semantic digest, unique wrt the source sql, EXCEPT foldFuncCallLiterals : word * pointer * pointer * pointer *
FOR any literal values within the statement (the returned value pointer * pointer —> pointer
is best-effort, that is, if a lex error occurs, it will include a raises : {UnknownSqlld, LexError, ParseError},
representation of all of the lexeme’s before the error). Returns (* uint8_t* foldRecursiveSqlLiterals(uint32_t sqlld, fispeCB f,
the statement type in stmtT, as an ordinal of uint8_t *ctxInit);
ef::SqlStatement:: Type (this is a best-effort, estimated type and 50 Fold a function f of the form:
may be ST_UNKNOWN). Returns 0, on success, and a non-zero uint®_t* (*rsICB) (uint32_t lidx, uint8_t* ctx);
error over any recursive literals containing embedded sql statements
code (see the LE_XXX members of SQLAux.errorCode, on lex found in the statement associated with sqlId. Returns the
eITor. accumulation of opaque contexts, whose initial value is ctxInit.
If error result, and leLen is non-zero, on entry, it contains the *)
length of a byte array pointed to by leStr, and on exit, leLen 55 foldRecursiveSqlLiterals : word * pointer * pointer —> pointer
will contain the length of the descriptive lex error string raises : {UnknownSqlld, LexError, ParseError}
actually written to this array. *)
lexSsq : word * pointer * pointer * pointer * bool * pointer * map { }
word ref * pointer * word ref —> int,
(* int32_t lex (uint32_t dialect, const char *sql, lexCB_t lexCB,
uint8_t **ctx, bool litsOnly, uint8_t *digest, uint32_t *leLen, 60 Copyright 2013 DB Networks.
uint8 *leStr, uint32_t *stmtT)
iust like above, but lexes a concrete string, rather than an Ssq. 5 LOg and Tally Systems
lexStr : word * string * pointer * pointer * bool * pointer * Embodiments of tally system 1345 and log system 1350,
word ref * pointer * word ref —> int, : : : . . :
. . ; : . illustrated in FIG. 13, will now be described in detail. Tally
(* int32_t parse (uint32_t dialect, uint32_t sqlld, const uint®_t
*sql, uint32_t *pelen, uint8_t *peStr, wint32_t *stmtT) 65 system 1345 and/or log system 1350 may record events that

are output from feed 1315 for subsequent use by learning
module 1360 and master scoring module 1365.

Parse sql, in the given dialect, identified with the given sqlld.

US 9,185,125 B2

45

5.1. Log System

In an embodiment, log system 1350 maintains a large
wraparound buffer mapped into memory from a file on per-
manent media (e.g., solid-state drive or other hard drive). The
operating system may manage mapping the file (which may
be large, e.g., 200+ Gigabytes) into a number of smaller-sized
in-core pages using standard memory-mapping facilities.
Log system 1350 can use the mapping facilities to map a
much smaller section of the overall log into memory. Several
such sections can be mapped into memory. As each section
fills up with log data, the next section may be used, a new
section may be mapped, and an old section may be released.
The result, in effect, is a 200-Gigabyte circular buffer of
structured messages. The structure of each message may
include a length field which determines the start of the next
record. In addition, the log buffer may also contain a header
region that holds an offset to the next available space (e.g., the
oldest record in the system or a blank space).

In an embodiment, many central processing unit (CPU)
cores may simultaneously use the log buffer. Thus, entries are
not maintained in strict timestamp order. A separate index
may be kept in a persistent database which maps from a
timestamp range to a range of offsets in the log buffer. This
can be used by clients of the log system (i.e., other modules)
to find traffic in which they are interested, given a time range
with a resolution of, for example, five minutes. It should be
understood that the resolution of the time range may be any
number of minutes or seconds, depending on the particular
design goals. To prevent too many slow accesses to the under-
lying database, a write-back cache (e.g., of sixty-four five-
minute time spans) may be maintained for index entries.

The messages in the log buffer may refer to a previous
message, where needed, to avoid duplicating data. A session-
creation message can contain the log offset of the connection-
creation message with which it is associated. A task-execute
message can contain the offset of the session-creation mes-
sage for the session with which it is associated. When a series
of execution requests are chained together, each one can
contain a pointer to the very first execution of that request.

The pointers used by the index and the self-references can
contain a generation number and a byte offset in the log
buffer. The generation number is used to determine if the log
has wrapped around, and thus, that the data is no longer
available for a given pointer value.

In an embodiment, log system 1350 receives all feed
events, extracts all the unique information from them, and
then writes them to the next available location in the log
buffer. The amount of traffic determines how much time the
log buffer can represent. For example, at very energetic, con-
tinuous traffic rates (near the top of the system’s capacity) a
200-Gigabyte log buffer can hold approximately seven days’
worth of traffic. A high level of compression can be achieved
due to frequently-used data (e.g., SQL commands, client and
server IP specifications, etc.) being written to a separate data-
base once (e.g., the database of feed system 1315) and
assigned an identifier (e.g., an identifier from feed system
1315) which is only written in each individual log record. An
additional measure of compression can be achieved due to
later records back-referencing prior records in a chain of
operations, rather than duplicating all the required data with
every operation.

Using log system 1350, the output of feed 1315 can be
reconstructed between any two logged points in time. Thus,
these feed 1315 outputs can drive learning module 1360 and/
or scoring module 1365, as if these modules were learning or
scoring directly from the feed data in a live capture.

15

20

30

40

45

46

5.2. Tally System

In an embodiment, tally system 1345 keeps summary data
for all traffic aligned, for example, on five-minute boundaries
(or some other boundary duration). This summary data can be
used to create summaries of traffic for learning system 1360,
operating interfaces 1395, and the like. Operation of the tally
system 1345 will now be described.

In an embodiment, operations and events can be grouped
together in tally groups based on one or more of the follow-
ing:

(1) SQL template identifier from the feed.

(2) time identifier, which is a five-minute span (or other
predetermined time span) identified by how many five-
minute time periods (or time periods of another prede-
termined time length) had occurred between a certain
time (e.g., Dec. 31, 1969 Universal Coordinate Time
(UTC)) and the time in question.

(3) user identifier from a session login record.

(4) service identifier from the session login record, mapped
to the server TCP port and name by feed metadata.

(5) client host identifier, mapped to the network IP address
and realm of the database client by the feed metadata.

(6) server host identifier, mapped to the network IP address
and realm of the database server by the feed metadata.

In an embodiment, one or more of the following data may
be kept for each tally group:

(1) Counts of the number of request executions started,
number of requests parsed or prepared but not executed,
number of requests re-executed (chained), and/or num-
ber of requests executed with accompanying fetch data.

(2) Total number of rows and/or bytes transferred from
client to server and/or server to client.

(3) Time that the server has spent executing requests.

(4) Time that the server has spent servicing fetch requests.

6. Learning System

In an embodiment, learning system 1360 is responsible for
coordinating learning (e.g., model building) for one or more
algorithms (e.g., analytical modules used by master scorer
1365). In an embodiment, each of the actions described in this
section may be carried out by learning system 1360. There are
two primary forms of learning: (1) time-based; and (2) event
based. All learning may be specified via operator interface
module 1395. For example, an operator may enter parameters
and/or commit events to a learning specification through one
ormore user interfaces provided by operator interface module
1395. These operator-specified parameters and committed
events to the specification may be written to an internal data-
base.

FIG. 18 illustrates an example time and user learning
schema, according to an embodiment. Specifically, FIG. 18
shows how a learning set for a database can be specified via
timed learning (a set of intervals tied together with a learning
specification, all under a specific profile identifier, to allow
groups of them to be swapped in and out) and via “user” (i.e.,
per-statement) learning, where a set of statements to be
learned are directly specified by the “sql_group_uf” field and
an overarching profile identifier. The profile identifiers allow
the learning and scoring systems to run multiple times in the
same system. Thus, learning and/or scoring can be executed
in production mode, and, at the same time, trial learning for a
different learning set and/or trial scoring may be executed
without disrupting the production activities.

6.1. Time-Based Learning

In time-based learning, an operator identifies a database
and a time period or periods that are representative of normal
traffic for an application. Using the operator interface pro-
vided by operation interface module 1395, a message or sig-

US 9,185,125 B2

47

nal can be sent to learning system 1360 to initiate a learning
cycle. Learning system 1360 can create a database transaction
context which each of a plurality of scoring algorithms may
use. [fany algorithm’s learning fails, all learning can be rolled
back via this transaction context. Each algorithm is then given
the learning specification and calculates learned data based
on the data from tally module 1345 and log module 1350 that
has been stored for the relevant time period. Some algorithms
may depend on calculations performed by other algorithms.
Thus, in an embodiment, learning system 1360 executes the
scoring algorithms in a specific order. For example, with
respect to the exemplary algorithms described in greater
detail below, the algorithms may be executed in the following
order: DS1, DS2, DS3, DS4, DS6, DS9, DS10, and DP14.

FIG. 19 illustrates example inputs to a timed-based learn-
ing system and a summary of the byproducts of learning for
each of the illustrated algorithms, according to an embodi-
ment. In the illustrated embodiment, log module 1350
receives binds, literals, and execution details (e.g., from feed
1315) by time (i.e., for one or more time spans), and tally
module receives statements (e.g., SQL statements) by time.
Log module 1350 and tally module 1345 then pass output data
(e.g., summary data 1355) to a learning manager 1368 of
learning system 1360. Learning manager 1368 also receives,
as input, a learned profile 1362 and a learning specification
1366, which is based on or includes one or more time inter-
vals. Learning manager 1368 may retrieve the learned profile
1362 and learning specification 1366, as well as other data
from database 1364. Learning manager 1368 then executes or
initiates execution of the learning phases for one or more
scoring algorithms, e.g., using parameters received as or
derived from the inputs (e.g., learned profile 1362, database
1364, and/or learning specification 1366). In this learning
phase, these algorithms are executed to configure them
according to learned profile 1362 and learning specification
1366, i.c., to “teach” the algorithms. For example, each algo-
rithm may comprise a model (e.g., of acceptable traffic) that
is updated in the learning phase, according to the input passed
to it (e.g., acceptable traffic and/or other input or parameters
passed to it by learning manager 1368). This updated model
can then be used in the scoring phase to determine whether or
not input traffic is acceptable or not.

The scoring algorithms may comprise DS1 1910, DS2
1920, DS3 1930, DS4 1940, DS6 1950, DS9 1960, DS10
1970, and DP14 1980, which are described in greater detail
elsewhere herein. One or more of the algorithms may be
executed and generate outputs in the learning phase. For
example, in the illustrated embodiment, DS1 is executed and
produces an output “dsl.statements” 1912 comprising all
statements seen by the database, in all time intervals specified
by learning specification 1366, for learned profile 1362. In
addition, DS2 is executed to produce relevant bit patterns
1922, and DS3 is executed to produce an identification of a set
of'rules 1932 (e.g., to be disabled). Notably, DS4 and DS6 do
not produce outputs in the illustrated learning manager run,
since these algorithms are only relevant to the broader context
of scoring (e.g., performed by master scorer 1365). Further-
more, DS9, DS10, and DP14 do not learn from the time
regions or time intervals of learning specification 1366.

6.2. Event-Based Learning

In event-based learning, an operator may mark certain
events, which were previously judged as attacks, as non-
attacks, and commit these changes (e.g., using one or more
inputs of one or more user interfaces provided by operator
interfaces module 1395). Learning system 1360 then includes
these marked and committed events in the algorithms’ models
of acceptable traffic. Specifically, each algorithm that has a

30

40

45

55

60

48

learning change is notified that changes have been made to the
event-based learning specification(s) by the operator. Accord-
ingly, each algorithm may subsequently recalculate its
learned state.

7. Master Scorer

Embodiments and operations of master scorer module
1365, illustrated in FIG. 13, will now be described in detail.
Master scorer module 1365 coordinates operation of all the
algorithms (e.g., algorithms 1910-1980) to evaluate feed
events against the learned models of each algorithm.

FIG. 20 illustrates high-level data and control flow around
master scorer module 1365, according to an embodiment. A
feed operation from feed 1315 is passed into master scorer
module 1365 for evaluation. Master scorer module 1365 may
also receive, as inputs, a user profile 2010, learned profile
1362, and/or a database list 2020. Together, user profile 1010
and learned profile 1362 specify the set of model and feed
data upon which master scorer 1365 will operate. In an
embodiment, master scorer 1365 could comprise two or more
scorers—e.g., one using a test version of user profile 1010,
and one using the production version of user profile 1010—
while each of the scorers utilize the same learned (e.g., time-
based) profile 1362. Database list 2020 is a filter specifica-
tion, which conveys, to the scorer 1365, which database
identifiers are to be scored (all other traffic may be ignored
and not scored).

In the illustrated embodiment, master scorer module 1365
signals each scoring algorithm, in turn, that there is an event
to be evaluated. Each algorithm then generates a group of
concept scores that are dependent on the operation (e.g.,
database operation) to be evaluated (described in greater
detail elsewhere herein). It should be understood that the
scoring algorithms may be run serially or in parallel, and that
some of the algorithms may be run in parallel, while others are
run serially. In an embodiment, each of one or more of the
algorithms may have access to scores from earlier runs of the
same algorithm and/or other algorithms, such that the scoring
generated by the algorithm depends and is affected by the
earlier scores. For instance, the illustrated algorithms may be
notified by master scorer module 1365 in the following order:
DS11910,DS21920,DS31930, DP14 1980, DS4 1940, DS6
1950, and DS10 1970. In an embodiment, the latter four
algorithms (i.e., DP14, DS4, DS6, and DS10) are only
invoked for events that carry an SQL payload, rather than a
simple Remote Procedure Call (RPC) message.

An example embodiment of a scoring method performed
by master scorer module 1365 will now be described. In the
illustrated scoring method, each algorithm provides a narrow
view on the threat level of a given operation. Thus, in isola-
tion, none of the algorithms may provide practical perfor-
mance due to a high rate of false positives. However, in the
described combination, the false-positive rate is significantly
reduced to a practically useful level without compromising
detection sensitivity, e.g., by combining scores output by two
or more of the plurality of scoring algorithms. In the illus-
trated embodiment, the concepts, intermediate scores, and
final score are floating point values in the range O to 1, and the
following operations (which are binary, unless otherwise
noted) are defined:

Definition
Name Operator (LHS/RHS = left/right-hand side)
Fuzzy AND & minimum of LHS and RHS
Fuzzy OR | maximum of LHS and RHS
Fuzzy Multiply * numeric product of LHS and RHS

US 9,185,125 B2

49
-continued

Definition
Name Operator (LHS/RHS = left/right-hand side)
Equality == LHS and RHS are equivalent
Greater > LHS is numerically greater than RHS
Greater or Equal >= LHS is numerically greater than or

equivalent to RHS
Less < LHS is numerically less than RHS
Less or Equal <= LHS is numerically less than or

equivalent to RHS
Unary Complement ~ 1.0 minus RHS
Unary is Not Set is not set LHS has no value (NULL)
Unary is Set is set LHS has a non-null value
Unary is True is true LHS has a value greater than 0.0
Unary is False is false LHS has a value of 0.0

The illustrated scoring method follows the following logic,
in which a named concept from a given scorer (e.g., one of
algorithms 1910-1980) is annotated as scorername.concept-
name (e.g., DS1.novelty) and in which fuzzy logic operations
are used as defined above:

[feed event received];

invoke algorithms in order: DS1, DS2, DS3, DP14, DS4, DS6, DS9,

DS10;

if (DS4.novelty is not set) { novelty = DS1.novelty; }

else { novely = DS4.novelty; }

if (DS4.isInsertion is not set) { isInsertion = NULL; }

else { isInsertion = DS4.isInsertion; }

if (isInsertion is set) {
if (DS4.allAdjacent is true) { isInsertion = isInsertion &
DS4.allAdjacent; }

if (DS4.notAppVariation) { notAppVariation = DS4.notApp Variation; }
if (DS6.notAppVariation) { notAppVariation.DS6.notApp Variation; }
fishySQL = DS2.fishySQL;
dosPatterns = DP14.dosPatterns;
if (novelty) { novelty = 0.5; }
if (\notAppVariation) { notAppVariation = 0.5; }
if (lisInsertion) { isInsertion = 0.5; }
if (MishySQL) { fishySQL = 0.5; }
if (!dosPatterns) { dosPatterns = 0.5; }
threat = (novelty & isInsertion & notApp Variation)
| (fishySQL & isInsertion)
| dosPatterns;
if (DS9.allInsertsFound) { threat = (1.0 - threat) *
DS9.allInsertsFound; }
if (threat >= 0.3) { signal an attack; }

Copyright 2013 DB Networks.

At a high level, the example code above calculates, using
an infinite-valued logic system (“fuzzy logic™), the final score
that the scorer 1365 will assign to events being scored. In this
embodiment, the final output is a “threat” value between zero
and one, where a threat value greater than 0.3 is considered an
attack.

In the example above, the logic blends the concept outputs
from the algorithms. Each algorithm produces one or more
fuzzy-logic score concepts that make an assertion about some
aspect of its model’s analysis. For example, “ds1.novelty” is
a concept that asserts that, given the specified learning and
user profiles, the scored statement was or was not experienced
during learning. In an embodiment, this “ds1.novelty” con-
cept is binary, e.g., its value will be either 0.0 or 1.0, with 1.0
representing that the scored statement was not learned. Other
concepts, such as the DS4 algorithm’s concept of application
variation may take on values between zero and one, depend-
ing on the “strength” of the assertion (e.g., from certain to
uncertain).

In an embodiment, the name of a concept or assetion
implies the direction of certainty. For example, a value of 1.0

10

15

20

25

30

35

40

45

50

55

60

65

50

for the concept “isInsertion” would mean that an algorithm is
certain that the scored statement represents an insertion,
whereas a value of 0.0 would mean that the algorithm is
certain that the scored statement does not represent an inser-
tion. All of the concepts represented by the algorithms may
work in this manner. For example, the concept “notApp Varia-
tion” may assert, more or less strongly, that a scored event
represents something that an application would not do. Given
this framework, the fuzzy logic “&”, “I”, and “!” in the above
code can be described as follows:

“&” (fuzzy AND) is the minimum value of its two oper-
ands, i.e., the least certain assertion.

“I” (fuzzy OR) is the maximum value of its two operands,
i.e., the most certain assertion.

“I” (NOT) simply means the concept was not produced by
the algorithm (e.g., the value is undefined, the algorithm
could not make any sort of assertion, or a lack of an
assertion due to a lack of data or context).

In addition to the scoring method, master scorer module
1365 and/or learning system 1360 may issue advisories based
on scored concepts. For example, concepts from DS2, DS3,
and DS8 with scores greater than 0.5 (or some other prede-
termined threshold) may cause an advisory to be issued.
These advisories may be delivered as events (e.g., via event
notification module 1390), but marked with an advisory indi-
cation. This mechanism can be used to alert an operator of
potentially unsafe operations (e.g., via operator interfaces
module 1395).

8. Event system

Embodiments and operations of an event system, e.g.,
comprising event log module 1380 and/or event notification
module 1390, illustrated in FIG. 13, will now be described in
detail. In an embodiment, the event system receives threat
notifications from master scorer module 1365. When a threat
is signaled, the event system may gather detailed forensic
evidence from each of algorithms’ 1910-1980 (or a different
set of algorithms”) scoring activities, including the concepts
generated and algorithm-specific data (described in greater
detail elsewhere herein). The gathered forensic evidence and
data surrounding the feed event itself may be logged into a
database (e.g., viaevent log module 1380). Operator interface
module 1395 may also be notified of a new event by event
notification module 1390. Thus, operator interface module
1395 can display a summary message, in one or more user
interfaces, indicating the severity of the event and/or a control
(e.g., input, frame, or other display) that allows an operator to
inspect the forensic data. Event notification module 1390 may
also send an alert notification via a SYSLOG facility to an
operator-defined external network entity.

9. Algorithms

Embodiments of the scoring algorithms 1910-1980, men-
tioned above, will now be described in detail. While one or
more of these algorithms may be described as developing
models of acceptable traffic in the learning phase and scoring
based on whether captured traffic matches these models of
acceptable traffic in the scoring phase, it should be under-
stood that, in other embodiments, these algorithms could
alternatively develop models of suspicious traffic in the learn-
ing phase and score based on whether captured traffic
matches these models of suspicious traffic in the scoring
phase, and vice versa.

9.1.DS1

In an embodiment, the purpose of DS1 algorithm 1910 is to
classify SQL statement templates as having been learned or
not. An SQL statement template is identified by its structural
signature. A structural signature of a statement will generally

US 9,185,125 B2

51

differ if the statement changes in a manner other than a
change in the values of its literals.

DS1 algorithm 1910 may maintain a set of all unique SQL
templates seen during a learning (e.g., an execution by learn-
ing manager 1368). For time-based learning, tally system
1345 may be queried for every unique statement within one or
more specified time ranges for a database being learned. For
event-based learning, SQL templates associated with opera-
tor-marked events may be generated and/or added to the
learned set for a given database.

9.1.1. DS1 Learning

FIG. 21 illustrates a process 2100 of generating a set of
SQL templates in a learning phase of DS1 algorithm 1910,
according to an embodiment. In step 2110, an operator ini-
tiates learning (e.g., via operator interfaces module 1395).
Alternatively or additionally, this learning may be initiated
automatically according to a predetermined schedule or trig-
gering event. In step 2120, it is determined whether any tallies
(i.e., recorded operations from tally system 1345) remain. If
s0, the process proceeds to step 2130; otherwise, the process
proceeds to step 2160.

In step 2130, the tally is read. In step 2140, if the tally
matches a database specification (e.g., satisfies one or more
criteria) and a time-range specification (e.g., is within a speci-
fied time range), the process proceeds to step 2150; other-
wise, the process returns to step 2120. This specification
check, in step 2140, filters out tallies that are for databases
other than the one for which learning is being performed or
that are outside of the specified time range. In step 2150, an
SQL identifier for an SQL template that matches the tally is
added to a learned set of SQL templates.

In step 2160, it is determined whether any event specifica-
tions remain. If so, the process proceeds to step 2170; other-
wise, the process proceeds to state 2190 in which learning is
complete. In step 2170, an event specification is read and
compared to a database of event specifications. In an embodi-
ment, each tally has a list of event(s) that it represents (e.g.,
“prepare,” “execute,” “fetch,” and/or combinations thereof).
Thus, in step 2170, events can be filtered so that, for example,
only events that contain an “execute” are scored.

In step 2180, an SQL identifier for an SQL template that
matches the event (i.e., an SQL identifier on which the tally is
keyed) is added to the learned set of SQL templates. Accord-
ingly, the output of the process in step 2190 is a learned set of
SQL templates.

9.1.2. DS1 Scoring

In an embodiment, in the scoring phase, DS1 algorithm
1910 marks up events with the concept “DS1.novelty”. This
concept is 0.0 if, for the event being evaluated, an SQL tem-
plate was found in the set of learned templates (e.g., thereby
indicating that the event is acceptable). On the other hand, the
concept is set to 1.0 if, for the event being evaluated, an SQL
template was not found in the set of learned templates (e.g.,
thereby indicating that the event may represent an attack).

FIG. 22 illustrates a process 2200 of scoring an event in a
scoring phase of DS1 algorithm 1910, according to an
embodiment. In step 2210, master scorer module 1365 sig-
nals a new SQL-based event. In step 2220, it is determined
whether or not an SQL template, matching the event, is iden-
tified in a learned set (e.g., generated by process 2100). If so,
the novelty concept is set to 0.0. Otherwise, if a matching
SQL template was not identified, the novelty concept is set to
1.0.

9.2. DS2 and DS3

Inan embodiment, DS2 algorithm 1920 and DS3 algorithm
1930 are used to detect possible attacks by looking for ele-

10

40

45

50

55

52

ments and fragments of a language (e.g., SQL) that are known
to be used by attackers or other hackers.

For example, DS2 algorithm 1920 may search incoming
SQL for artifacts of an SQL injection. By way of illustration,
such artifacts may include SQL inside of comments, multiple
inline comments, equality expressions (e.g., “1=1"), etc. The
rules or criteria applied by DS2 algorithm 1920 are not attack-
specific, and thus, are much harder to fool than a typical
black-list expression matcher.

DS3 algorithm 1930 may search incoming SQL for seg-
ments that satisfy a set of one or more configurable and
upgradable rules. In an embodiment, the rules language
understands the various SQL syntaxes of SQL variants. Thus,
the rules can be expressed in high-level expressions. Each
rule may also comprise or be associated with descriptions to
help operators determine why the rule is important and/or
why a matching SQL segment is potentially dangerous. DS3
algorithm 1930 is essentially an extension and improvement
of a black-list expression matcher.

Inanembodiment, DS2 algorithm 1920 and DS3 algorithm
1930 share a number of common attributes. For instance, both
may operate on SQL. While neither is often definitive of an
attack, both provide evidence of a potential attack and clues
about attack techniques. Furthermore, they both can be used
during learning to inform (e.g., other scoring algorithms) of
possible attacks, during scoring to influence the score, and
during analysis to explain what an attack might be trying to
do. Both of the algorithms are able to operate regardless of
errors in the incoming SQL. In addition, in an embodiment,
forboth algorithms, rules that are matched during the learning
phase (e.g., representing normal SQL operations), are auto-
matically ignored during the scoring phase. In the analysis
phase, incoming SQL is rechecked by both algorithms against
all of the rules for both algorithms, even if the rule was
disabled in the learning phase. Also, an administrator can use
both algorithms to improve the quality of an application’s
code.

However, DS2 algorithm 1920 and DS3 algorithm 1930
may also differ in some respects. For example, DS2 algorithm
1920 may comprise rules to identify artifacts of insertion
techniques, and not specific black-list patterns or expressions.
These rules may include a rule to identify mismatched paren-
theses and/or quotes, a rule to identify common insertion
techniques such as valid SQL in comments, and/or a rule to
identify common equality techniques such as “||1=1" which
can be used to invalidate comparisons.

DS3 algorithm 1930, on the other hand, may comprise
rules that are scripted according to “what to look for” and/or
“where to look for it.” Furthermore, each rule may comprise
or be associated with a name and/or description (e.g., con-
taining the attack technique(s) which the rule is designed to
help detect). The rules for DS3 algorithm 1930 may comprise
rules to identify the use of dangerous functions often used by
attackers, rule(s) to identify erroneous operators (e.g.,
Oracle™-gspecific operators used for Microsoft™ SQL
Server), rule(s) to identify privileged operations not normally
allowed by applications, and/or rule(s) to identify statistical
or structural information about a database that can be used by
attackers. In an embodiment, each rule for the DS3 algorithm
1930 comprises one or more of the following elements or
attributes:

(a) Whether the rule is database-specific, or applies to any

type of database;

(b) The field type to which the match applies (e.g., operator,

function, etc.);

(c) Whether or not the field is “careless” (i.e., whether it

matters which case the field is in, since many SQL syn-

US 9,185,125 B2

53

taxes are ambivalent to the case used, i.e., lowercase or
uppercase, for keywords or operators);

(d) The severity of the rule (e.g., 1=harmless, 2=annoying,
4=dangerous, 8=crtirical, etc.);

(e) A short description to be used in match summary
reports; and

(f) A long description to be used in detailed event reports.

9.2.1. DS2 Learning

In an embodiment of the learning phase for DS2 algorithm

1920, an array of flags may be produced using the following
steps:

Step 1: Do a one-pass lexical scan of SQL looking for the
following items or group of items, and incrementing one
or more counters (e.g., for each of the items) whenever
one of the items or groups of items are identified: com-
ment, inline comment, single quote, double quote, non-
ASCII text, MDS5 string, comment bang, hexadecimal,
plus or minus operator, semicolon, union operator, inline
comment and SQL, inline comment and a quote, an
expression (e.g., Boolean expression) that is always true,
and/or an operation comprising an OR operator and an
expression that is always true.

Step 2: Examine one or more key counters to determine
whether any of them comprise uneven counts (i.e., not
divisible by two) and set corresponding flags accord-
ingly. For example, the array of flags may comprise a
flag indicating whether or not uneven comments were
found (“uneven comments found” flag) and a flag indi-
cating whether or not unmatched quotes were found
(“unmatched quotes found” flag). If the counter for com-
ments comprises an uneven number, the “uneven com-
ments found” flag may be set to true; otherwise the flag
can be set or retained at false. If the counter for quotes
comprises an uneven number, the “unmatched quotes
found” flag may be set to true; otherwise, the flag can be
set or retained at false. It should be understood that each
flag may, but does not necessarily, comprise a Boolean
data type, having only two possible values, one for true
and the other for false. However, it should be further
understood that other data types may be used, including
integer values (e.g., the counters themselves), strings,
etc.

Step 3: Examine the remaining (non-key) counters to deter-
mine whether they are non-zero and set corresponding
flags accordingly. For example, the array of flags may
further comprise one or more of the following flags that
can be set based on an examination of corresponding
counters: “one comment found,” “multiple comments
found,” “inline comment found,” “single quote found,”
“double quote found,” “non-ASCII found,” “MDS5 string
found,” “comment bang found,” “hexadecimal found,”
“plus or minus found,” “semicolon found,” “union
found,” “inline comment and SQL found,” “inline com-
ment and quote found,” “always true found,” “OR plus
always true found.” It should be understood that if the
counter for comments is one, the “one comment found”
flag can be set to true, if the counter for comments is
greater than one, the “multiple comments found” flag
can be set to true, if the counter for inline comments is
greater than zero, the “inline comment found” flag can
be set to true, if the counter for single quotes is greater
than zero, the “single quote found” flag can be set to true,
and so on.

Step 4: Store the generated array of flags. In an embodi-
ment, the array of flags may be subsequently reviewed
and/or edited by an administrator. This array of flags
may be subsequently used in the scoring process to

5

15

20

25

30

35

40

45

50

55

60

54

disable one or more rules, as described below. For
example, depending on whether a flag is set or not set
(e.g., true or false), a corresponding one of the rules may
be ignored or used in the scoring phase.

9.2.2. DS2 Scoring

In an embodiment, scoring in DS2 algorithm 1920 is opti-
mized to be done quickly, according to the following steps:

Step 1: The same four-step procedure, as performed in the

learning phase (described above), is performed on
incoming SQL to generate an array of flags.

Step 2: The array of flags learned in the learning phase

(described above) is loaded.

Step 3: The loaded array of flags from the learning phase is

compared to the generated array of flags. In an embodi-
ment, this comprises inverting and arithmetically
AND’ing the loaded array of flags from the learning
phase with the array of flags generated in Step 1 of the
present scoring procedure (i.e. scored & "learned). Alter-
natively, the array of flags generated during this scoring
phase could be inverted and arithmetically AND’ed with
the array of flags generating during the learning phase
(i.e., learned & “scored). In either case, in this embodi-
ment, the result of the operation is that any flags which
were set to true in both arrays of flags will obtain a value
of false. Of course, it should be understood that other
methods of comparing an array of flags or values may be
used.

Step 4: If the resulting array is null (i.e., the result of the

operation results in all false values), a score of zero is
returned, indicating that no new rules have been vio-
lated, and the process ends. Otherwise, if the resulting
array is not null, the process continues on to Step 5.

Step 5: If, in Step 4, the resulting array is not null, a score

is calculated from the resulting array. In an embodiment,
alookup table may be used to convert the flags setto true
(e.g., non-zero flags, or flags with Boolean values of
“true”) in the array into a single score. This lookup table
may map non-matching bit flags to score components,
which can then be aggregated into an overall score.

9.2.3. DS3 Learning

In an embodiment, the learning phase for DS3 algorithm
1930 comprises the following steps:

Step 1: The rules for a particular monitored database are

loaded into a static instance of DS3 algorithm 1930 at
application start-up or initiation.

Step 2: As incoming SQL is input to the instance of DS3

algorithm 1930, the SQL is compared against each ofthe
loaded rules. For each rule that is matched to the SQL,
the matched rule is added to a learned set of rules.
Matching is performed by evaluating each element of
the rule against the SQL input. As a non-limiting
example, the following rule expresses that the field type
“CSFunction” should be scanned for the pattern
“LEAST” for non-Oracle databases, because “LEAST”
is an Oracle-only construct:

String Se-
Field Type toMatch DBType verity Reason Description
1 CSFunction LEAST Non- 1 Oracle- max or min
Oracle only number or

function string in list

If found, the severity associated with this potential attack may
be scored as “1”.

US 9,185,125 B2

55

Step 3: Once all of the loaded rules have been examined,
the learned set of rules is stored. Alternatively or addi-
tionally, the set of unmatched rules may be stored as an
unlearned set of rules.

These steps may be performed for each of a plurality of
monitored databases (e.g., separate database servers or sepa-
rate databases on the same server), and a learned set of rules
can be separately stored for each of the monitored databases.

9.2.4. DS3 Scoring

56

(i1) The new statement is a member of a small group of
statements based on another statement. If the group is
not small, the new statement is more likely to be appli-
cation variation.

(ii1) The new statement fits into an existing statement with
a minimal number of edits. A statement with more edits
is more difficult to create through injection.

(iv) The new statement can be created from an existing
statement where all insertions are adjacent to literals. If
all of the insertions are not adjacent, then likely the only

The scoring phase for DS3 algorithm 1930 may be similar 1o way that the new statement could be an attack is if the
to the learning phase, except that only unlearned rules are application allows an external entity to enter native SQL.
examined. In other words, if a match is identified for a par- In an embodiment, DS4 algorithm 1940 operates by taking
ticular rule during the learning phase, DS3 algorithm 1930 statements (e.g., SQL statements) and breaking them down
will not attempt to match that rule during the scoring phase. | into a series of 1e>.(emes. These lexemes are u§ed to represent
Thus, while a behavior represented by the rule may perhaps the natural grouping of characters. as syntactic elements. ina

. - . . . language, such as SQL. DS4 algorithm 1940 can create either
be con51dereq SUSpIC10US 11 the abst.ract., if that behavior is normal lexemes or raw lexemes, the difference being how the
found to be utilized in the actual application, the correspond- literals are represented.
ing rule will be disregarded in the context of that application. In an embodiment, if normal lexemes are being created,

As an example, in an embodiment, the procedure for the 20 literals are folded into one of two reserved lexemes (repre-
scoring phase comprises the following steps: sented by lexeme identifiers) for string and numeric literals. A

Step 1: The unlearned set of rules is loaded into a static first lexeme identifier would be for string literals, and a sec-
instance of DS3 algorithm 1930 at application start-up ond lexeme identifier would be for numeric literals. The lit-
or initiation. eral lexemes are the only lexemes with a predefined value. All

Step 2: As incoming SQL is input to the instance of DS3 25 other lexeme values are a§51gned at the time that the.stnng to
algorithm 1930, the SQL_ is compared against each of the be turned into lexeme(s).ls enpountered. The fo}lowmg table

’ illustrates how lexeme identifiers may be assigned in one
unlearned rules. scenario:

Step 3: For each of the unlearned rules that is matched to
the SQL,, a score is obtained (e.g., returned, calculated,
etC~)~ 30 String Lexeme Identifier

Step 4: Once all of the unlearned rules have been examined T e o e)
and a score has been obtained for each matching ifoolsbljr,a strme 1
unlearned rule, the scores are combined into or other- 23 2
wise result in a single score. The scores may be (but are 100.34 2
not necessarily required to be) combined into the single
score in a non-linear way. For example, the unlearned In an embodiment, if raw lexemes are being created, as the
rule having the highest severity may determine the raw lexemes are gathered, the character(s) that define the start
single score. or end of a literal string are treated simply as word break

93. DS4 4o Characters. For example, in the same scenario illustrated

In an embodiment, DS4 algorithm 1940 lexically examines above, identifiers for raw lexemes may be assigned as fol-
new statements and creates artifacts representing individual lows:
concepts. In the scoring phase, these concepts may be com-
bined with concepts from other algorithms to determine String This is a string
whether a newly arrived statement (e.g., SQL statement) is 45 Identifier 3 4 5 6 5 7 5 8 3
likely an attack. In particular, DS4 algorithm 1940 may be String foo bar

. . . R Identifier 3 9 5 10 3
aimed at discovering attacks that are based on injecting fur- String 23
ther SQL into existing statements. Identifier 11

Inan embodiment, the concepts represented by the artifacts String 100.34
created by DS4 algorithm 1940 based on an examined new 50 Identifier 12
statement comprise one or more of the following:

(i) The new statement is not based on an edit of any existing All other groups of characters may create unique lexemes.
statement, indicating that the new statement is not an For example, the statement, “select 1.2, foo, ‘hello’ from bar,
attack against an existing statement. where f00>1.3;” would turn into the following lexemes:

select 1.2, foo , ‘hello” from bar , where foo > 1.3
342 5 4 6 5 4 4 7 4 8 5 4 9 4 6 4 10 4 2 11

If raw lexemes are used, the same string turns into the
following raw lexemes:

hello
15

select
14

14

4 7 4 8 5 4 9 4 6 4

from 1.3

13 11

US 9,185,125 B2

57

In an embodiment, DS4 algorithm 1940 groups statements
into trees by associating one statement with another statement
that it may have been constructed from by only adding lex-
emes. For instance, a first statement “3 4 5 7 8” would not be
in the same group as a second statement “3 4 5 8 77, since
there is no way to make one from the other simply by adding
lexemes. However, a third statement “3 8 4 57 8 would be a
member of the group headed by the first statement, and a
fourth statement “3 8 4 6 5 7 8” would be a member of the
group headed by the third statement. When grouping state-
ments together, DS4 algorithm 1940 may use folded literal
lexemes.

In an embodiment of DS4 algorithm 1940, to determine
how one statement is related to another statement, a modified
version of Myers’ Diff algorithm is applied to the two sets of
lexemes representing the statements. The Myers’ Diff algo-
rithm is described by Eugene W. Myers in his paper, “An
O(ND) Difference Algorithm and Its Variations,” published in
Algorithmica, November 1986, which is hereby incorporated
herein by reference. The algorithm can be modified to require
that the larger statement be only insertions into the shorter
statement. Use of this modified algorithm provides a means to
compute the minimal number of edits, and therefore, to deter-
mine both the most likely statement and the most likely injec-
tion point of an attack on an existing statement.

In an embodiment of DS4 algorithm 1940, an edit distance
is calculated with the primary key being the number of inser-
tions required and the secondary key being the number of
lexemes that are inserted. For instance, if statement A can be
created from statement B by a single insertion of ten lexemes
into statement B, and statement A can be created from state-
ment C by two insertions of a single lexeme into statement C,
statement B is considered to have the minimal edit distance
from statement A. Minimum edit distance is used to select
what statement is the base or head of the group to which
another statement belongs. If there is no way to create state-
ment A from statement B by just adding lexemes, then the edit
distance is null.

9.3.1. Learning

In an embodiment, DS4 algorithm 1940 begins by learning
statements which may later be subject to injection attack. The
learning activity can be limited to grouping statements into
groups. These groups can be used to answer the “group is
small” question. They can also be used to limit the number of
statements which must be examined when looking for the
statement that a new statement might be attacking.

9.3.2. Scoring

In an embodiment of DS4 algorithm 1940, scoring initially
comprises finding a victim statement. The victim statement is
the learned statement with the closest edit distance to the
statement being scored. If there is no victim statement, a
“forms new group” artifact is true, and no other resulting
artifacts have meaning. Given a statement with a closest edit
distance, DS4 algorithm 1940 examines the details of the
“diff” (e.g., calculated by the modified Myers’ Diff algo-
rithm) to create one or both of the following artifacts: a “fits
well” artifact which is generated based on the number of
inserts required, and an “all adjacent” artifact which is gen-
erated by checking to see if the lexemes which were inserted
were against a literal lexeme. In addition, DS4 algorithm
1940 may set a “small group” artifact based on the number of
statements determined to be in the group headed by the victim
statement.

9.3.3. Quoting

Consider the first statement “Select id from users where
name="joe’ and password="xx’;”. An example attack may
involve inserting “joe’;—" as the name, creating the second

10

20

25

30

35

40

45

50

55

60

65

58

statement “Select id from users where name="‘joe’;— ‘and
password‘foo’;”. The naive thing would be to treat ‘and
password=" as a literal, and remove those lexemes. This
would make it such that the second statement appears to not
be an insertion against the first statement.

To work around this, when looking to see if one statement
is an insertion on another insertion, the following steps may
be taken:

Step 1: Remove the literal lexemes from the statement
which is thought to be the victim of an attack. In the
above, this would result in the original statement being
transformed to “Select id from users where name= and
password=;".

Step 2: Turn the statement which is being evaluated as a
potential attack into raw lexemes, treating quote charac-
ters as stand-alone lexemes, thereby exposing the
innards of the quoted string as multiple lexemes. No
matter how the quotes are arranged, the attacked state-
ment will look like a series of insertions on the original
statement. The following shows the alignment of lex-
emes:

Select id from users where name= and password=;

Select id from users where name=‘joe;

password="foo’;

By doing the diff in this manner, it is clear that, at the spot
where literals were expected, what was found was “joe’;—"".
In an embodiment, DS4 algorithm 1940 accomplishes the
above by using normal lexemes, with the literal lexemes
elided for the statement which is being considered as a pos-
sible victim of an attack, and using raw lexemes for the
statement which is being scored as a possible attacker. Once
the insertions have been found for the statement being scored,
a new set of lexemes are generated. These are generated by
going through the “diff” output. Any runs of lexemes that
were only present in the suspect statement can be turned back
into character strings. These character strings can then be
turned into lexemes using the normal method. This results in
returning literal lexemes for SQL that has not been attacked.
Any valid SQL that got subsumed by an attack will not be in
the runs of lexemes that are only present in the statement
being scored. A “diff” can then be done with the cleaned up
set of lexemes and the victim statement to determine the
artifacts to be returned.

9.3.4. Performance

When a large number of statements need to be considered,
either when forming groups in the learning phase or when
looking at a statement during the scoring phase, the time
required to perform the operation can become an issue. In an
embodiment, one or more of the following techniques are
employed to limit the number of statements which must be
examined in detail:

(a) Groups ordered by lexeme count. A list of all groups,
which have been ordered by the lexeme count of the base
statement in the group, is kept. All statements in groups,
whose base statement has a lexeme count greater than
the statement being examined, are known to create a null
edit distance. Thus, once the first group is encountered
whose base statement has a lexeme count greater than
the statement being considered, no further groups need
to be examined;

(b) Check for the ability to be generated only by insertions.
It is possible to check in order N time if it is possible to
create one statement from another by only insertions.
This can be done by setting a pointer to the first lexeme
in both the larger and smaller statements. The smaller
statement is then iterated through. For each lexeme in the
shorter statement, an iterator for the longer statement is

and

US 9,185,125 B2

59

repeatedly incremented and checked until it points at the
same lexeme as the iterator for the shorter statement. If
the end of the longer set of lexemes is reached, it was not
possible to create the longer statement from the shorter
statement by insertion only. These statements can then
be dropped from further consideration.

(c) Group base. If it is not possible to insert the suspect
statement into the statement which heads a group, then it
is known to be impossible to insert the statement into any
member of the group. All statements in the group, by
definition, contain all the lexemes in the statement which
heads the group in the same order. Therefore, if it is not
possible to find the base statement in the suspect state-
ment, it is impossible to find any of the statements in the
group, and thus, they need not be considered at all.

(d) Statements ordered by lexeme count. Each group con-
tains a list of statements ordered by lexeme count. Once
a statement is encountered whose lexeme count is
greater than the lexeme count of the statement being
examined, no further statements in the group need be
considered as a possible insertion.

9.4. DS6

In an embodiment, the purpose of DS6 algorithm 1950 is to
detect structural attacks. Specifically, DS6 algorithm 1950
may identify structural SQL injection attacks that result in
new structural data-access statements that are distinct from
those new statements commonly emitted by application code
generation.

9.4.1. Operation Overview

As previously described, structural injection attacks occur
when application-level user input (often, but not necessarily,
via the web interface of an application) is merged into struc-
tural data-access language statements dynamically generated
by an application, in such a way as to form statements lexi-
cally, syntactically, and semantically distinct from what was
intended by the application.

From the syntactic point of view, the production of a dis-
tinct new structural data-access statement (i.e., differing in
structure, ignoring literal values, from those previously seen
in the normal operation of an application) is a necessary
condition for SQL injection attack. Unfortunately, since
application tiers can be expected to generate distinct new
statements indefinitely, from a wide variety of template-
driven, code-generation techniques, this is not a sufficient
condition. It is typical for application tiers to dynamically
generate structural data access statements from complex tem-
plates, instantiated from user input dynamically. Therefore,
the full set of syntactically distinct statements generated by
the application may emerge slowly over an unknown time
scale, which may not even be finite.

The basic theory of operation behind DS6 algorithm 1950
is that, within some syntactic contexts, the evolving set of
statements generated by application template expansion can
be transformed into trees that are isomorphic to their parse
trees, and that these trees can be unified with a tree of pattern-
matching nodes. The evolving pattern-matching tree repre-
sents the variability of the code generation template(s) of the
application, and will admit new, previously unseen state-
ments because they reflect this pattern of application variabil-
ity. Conversely, attacking statements, arising not from appli-
cation code generation, but from user input (e.g., SQL
injection), will be unlikely to unify with the tree pattern, and
thus, will be detected.

9.4.2. Approach

In an embodiment, the polymorphic parse-tree representa-
tion, produced by language system 1325, is transformed into
a monomorphic representation that is isomorphic with the

20

25

30

40

45

50

60

parse tree, but with certain details flattened to ease pattern
recognition. The nodes of this tree may be initially grounded
to specific features of the input parse tree, but can be aug-
mented by patterns that represent variation both intrinsic to
individual nodes and extrinsic to the tree structure. For any
input tree, a grouping can be stateles sly computed which is
matched to exactly one evolving pattern. A fast, ordered,
top-down tree-difference algorithm to find the minimum top-
down edit distance between an input ground-state tree and its
pattern can be employed.

This edit distance serves two functions. First, the input can
be unified with the pattern by interpreting the edit distance as
a minimal set of pattern augmentations, thereby incremen-
tally expanding the patterns to reflect nominal application
code generation. This is an example of machine learning.
Second, the edit distance can be transformed into an estimate
of'the likelihood that the input represents structural injection
in the domain of the data access language versus expected
application code generation variation, thereby detecting
injections and discriminating potential false positives.

9.4.3. Implementation

An example implementation will now be described accord-
ing to a non-limiting embodiment.

9.4.3.1. LABEL, FACET, and TREE Signatures

In an embodiment, the SML signature LABEL defines the
intrinsic, potentially comparable state of the nodes of a tree in
terms of abstract comparability and equality functions. This
allows for the representation of mutable, but comparable,
label changes, in contrast to non-comparable, label-type dif-
ferences.

In an embodiment, the FACET signature expresses the
ability to represent the detailed comparison of comparable
labels in terms of abstract properties called “facets.” This
signature supports both detailed, facet-wise comparison of
labels and the generation of facet patterns which unify mul-
tiple comparable, but non-equal, labels.

In an embodiment, the TREE signature defines trees of
labeled, facetted nodes, extending these base formalisms to
represent top-down, tree-to-tree comparisons in terms of the
insertion, deletion, and replacement of facetted nodes. The
TREE signature defines a dynamic-programming-based dif-
ference computation which finds the minimum edit distance
between two trees in terms of these concepts.

9.4.3.1. LABEL Signature

LABEL is an abstract SML signature for the intrinsic fea-
tures of a tree node, specitying the following components:

type “label”: the opaque state of a label.

function “hash”: provides a 32-bit hash value for a label.

function “equals™: a predicate comparing two labels for

semantic equality. Two labels are considered identical if
this function returns true when applied to them.

function “comparable”: a predicate indicating whether two
labels can be meaningfully compared. Incomparable
labels correspond to strictly distinct equivalence classes
(see discussion of the FACET signature below).

function “reify”: represents a label concretely on a text-
oriented data output stream.

function “abstract”: creates an abstract label from its con-
crete representation on a text-oriented data input stream.

function “print”: writes a user-sensible representation to a
text output stream.

The LABEL abstraction may be implemented concretely
as described below.

US 9,185,125 B2

61
9.4.3.2. FACET Signature
FACET is an SML signature for a specific pattern-unifying
feature of comparable labels. Components may include:
structure “label”: a concrete LABEL implementation asso-
ciated with the FACET.
function “facets™: given a “label”, optionally provides a
function generating a vector of facets for the label, ini-
tially unifying only the features of the specific label. If
no function is provided, the label has no comparable
facets, and trivially matches comparable labels. The
order of facets within the vector is significant (see dis-
cussion of function “probe” below).
function “index™: given a facet, returns the ordinal within
the vector returned by function “facets”.
function “probe™ tests whether a given facet pattern
matches a given comparable label, returning one of the
following results: NoMatch (the labels do not match
with respect to a facet); Match (the labels match with
respect to a facet), and Matchlmmediate (the labels
match with respect to a facet, and, provided that facets
with indexes less than that of the specified one also
match, no further testing is required to prove label
equivalence).
function “augment”: unifies a given facet pattern with a
given, comparable label, such that a subsequent appli-
cation of the probe function would return Match or
MatchImmediate.
function “domainSize”: returns a lower bound of the size of
the domain of labels with features unified in the given
facet pattern.
function “isSparse”: returns true if the given facet admits
all comparable labels, such that further augmentations
can be skipped without semantic effect.
function “reify”: generates an external concrete represen-
tation of the facet on a text-oriented stream.
function “abstract™: creates an abstract facet from an exter-
nal text-oriented stream.
function “print”: creates a user-sensible representation of
the facet on the given text stream.
The FACET abstraction may be implemented concretely as
described below.
9.4.3.3. TREE Signature
The TREE abstraction specifies pattern-matching trees
with functionality including, without limitation, minimal
edit-distance computation, extrinsic (inter-node) pattern
matching, and/or unification in terms of the LABEL and
FACET functionality discussed above. All of this functional-
ity can be realized concretely without direct reference to
LABEL or FACET functionality by the TreeFun SML functor
discussed elsewhere herein. In an embodiment, TREE may
specify the following (eliding trivial elements):
type “context™: an implementation-specified type which
represents the augmented state of one or more patterns
which can share this context.
type “node”: an implementation-specified type which rep-
resents both the ground and pattern-matching nodes and
their children, recursively.
datatype “nodeType”: specifies the extrinsic pattern-
matching characteristics associated with a node, which
may include: Single (ground, i.e., requiring exactly one
node matching the associated one); Plus (requires one or
more nodes matching the associated one); Option (re-
quires one or zero nodes matching the associated one);
and/or Kleene (requires zero or more nodes matching
the associated one). The semantics of matching are non-
trivial and discussed below with respect to the function
“topDownDiff” of the TreeFun functor.

30

35

40

45

55

62

type “basis™: an implementation-defined type that repre-
sents the labels which have been augmented to form the
pattern intrinsically matching a node. Note that this is
distinct from the set of labels which intrinsically match
the node.

type “facetCtx™: a concrete record representing the intrin-
sic pattern of a node, and comprising: facets (a vector of
facets initially created by function Facet.facets() above,
but augmented by the basis of the associated node); and
basis (the basis of the associated node).

function “foldPre”: applies a user-specified function in a
depth-first, pre-order fashion, given a user-specified ini-
tial value and node. The user-specified function takes a
node and user-specified accumulation value as argu-
ments, and produces a new accumulation.

function “foldPost™: exactly like function “foldPre”, but
traverses in depth-first, post-order.

function “mkContext™: creates a new context.

function “mkNode™: creates a new node given a context,
label, and list of child nodes (themselves, previously
created).

function “label”: given a context and a node, returns the
associated label.

function “height”: given a node, returns the maximum
chain of reference by transitive closure over children. If
the node has no children, it returns 0.

function “children”: given a node, returns its children.

function “parent”: given a context and a node, returns the
nodes parent, if any.

function “isParent”: given a context and two nodes, returns
true if the first node is an improper parent (e.g., in the
sense that a node is its own improper parent) of the
second node.

function “nodeType”: given a context and a node, returns
the “nodeType”.

function “basisSize™: return the number of labels in the
given basis.

function “basisFold™: apply the given function over the
labels of the basis. This function takes a label and a
user-specified accumulation value, and returns the final
value of the accumulation.

function “facetCtx”: given a context and a node, returns the
“facetCtx” of the node or none, if it has not yet been
cached or is trivially matchable (i.e., comparability
implies a match).

type “facetMismatch”: arecord type describing an intrinsic
match failure with the following components: label (the
associated label failing to match a node intrinsically);
and/or facets (those facets which failed to match the
label, or, put another way, those requiring augmentation
to allow the label to unify the pattern).

data type “labelMatch™: a concrete data type representing
the result of attempting to match the intrinsic patterns of
two nodes, with variants: LMIdentical (the nodes are
identical, in the sense that their labels pass equality and
the target has no facets); LMMatch (the nodes match);
LMMismatch (the nodes do not match, and conveys a
list of “facetMismatch™ objects representing the fail-
ures, since, in general, pattern-to-pattern matching may
be supported); and/or LMIncomparable (the labels asso-
ciated with the nodes are not comparable, or, put another
way, their patterns cannot be augmented).

data type “edit”: concrete data type representing the mini-
mal tree edit operations necessary to transform a target
node into a source node, non-trivially. Variants may
include one or more of the following:

US 9,185,125 B2

63

(1) Replace: the target node is an in-place replacement
for the source, described by “replacement™ below.

(2) Insert: the target is a new node, inserted as described
by an embedded record with fields: src (an optional
source node to the left of the inserted, or, if none, the
insertion is the left-most child of the source node’s
parent); and tgt (the inserted node).

(3) Delete: the source node was deleted in the target, as
described by an embedded record with fields: src (the
node which was deleted in the target); and tgt (an
optional target node to the left of the deleted, or, if
none, then the deleted node is the left-most child of
the target node’s parent).

type “replacement’: represents a target replacement for a
source node as a concrete record type with fields: src

(source node); tgt (target node); match (labelMatch);

widen (an optional widening of the target node type

needed to accommodate the source, if needed); and/or
edits (an optional “editSeq”, described below, defining
the recursively defined edits necessary to unify the target
into the source pattern).

type “editSeq”: a concrete record type describing the cost
and edits associated with a replacement, and comprising
the following fields: cost (a real number representing the
cost of the transformation); and/or edits (a list of “edit-

Pairs”, described below).

type “editPair”: a concrete type representing a costed edit,
including the elements of an edit (described above) and

a real number representing its cost.

type “diffSpec”: a concrete record specifying the way a
difference computation is to be accomplished, and com-

prising the following fields: cost (a function mapping a

context and an edit to a real number representing the cost

of the edit); threshold (a real number which, if finite,
then merge costs above this threshold are not considered
by the difference computation but abandoned); and/or
map (a Boolean which, iftrue, always produces an “edit-

Map”, described below, even if costs are zero and there

are no edits).

type “editMap™: concrete record type representing the
result of a difference computation, and comprising the
following fields: context (context); spec (a “diffSpec”
specifying the computation); cost (a real number indi-
cating overall cost of the transformation); and/or
replacement (a “replacement™ describing the necessary
mapping).

function “topDownDiff”: computes exhaustively the top-
down minimal tree edit distance (in terms of the above
definitions) given a context, “diffSpec”, source node,
and target node. Returns an “editMap” if the trees are not
trivially matched (or if the “diffSpec” passes true for the
map field), which can be used to augment the target-tree
pattern into the source-tree pattern.

function “augment™: unifies the edits associated with a

given edit map into the source-pattern tree, returning a

tuple of the new, minimal context and root of the pattern

tree;

function “augmentl.abel”: given a context, node, and label,
attempts to unify the label with the node’s intrinsic pat-
tern. Returns true if the pattern was modified by unifi-
cation, or false if it was trivially unified.

function “reify”: writes a concrete representation of the
given context and tree node, recursively, to the given
output stream.

function “abstract”: builds and returns a new context and
node from the reified data on the given input stream.

10

15

20

25

30

35

40

45

50

55

60

64

9.4.3 4. TreeFun Functor

The TREE signature is implemented concretely by the
TreeFun functor, which takes a FACET structure (which itself
defines a LABEL structure) as an argument, i.e., completely
independent of these details. A fast, top-down, tree edit dis-
tance computation may be implemented, which produces a
mapping which can be efficiently unified with the source tree
pattern. This process can be carried out repeatedly to imple-
ment a type of machine learning to recognize structural pat-
terns latent in the input trees. This functionality is the core of
the DS6 algorithm’s syntactic pattern-recognition detector.
Formal SML implementations of each of the key features
described in the signature, plus expository text amplifying the
most important features of this implementation, will now be
provided.

9.4.3.4.1. Key Data Structures

A number of simple data structures can be used to give
context to functional descriptions later in this section:

type identity = int
datatype node = Node of {
ident : identity,
labelldent : identity,
height : int,
children : node list

structure LabelArray = MonoArrayFn(type elem = Label.label)
structure LabelQueue = QueueFun(structure Array = LabelArray)
type basis = LabelQueue.queue
type nodeAux = {

node : node,

parentldent : identity,

nodeType : nodeType,

facetCtx : facetCtx option

structure NodeAuxArray = MonoArrayFn(type elem = nodeAux)
structure NodeAuxQueue = QueueFun(structure Array =
NodeAuxArray)
type context = {
intern : (Label.label, identity) HashTable.hash_table,
labelMap : LabelQueue.queue,
aux : NodeAuxQueue.queue

}

Copyright 2013 DB Networks.

The node and context types can provide fast “interning” of
nodes and labels as integers in an atom table for portable,
trivial identity comparisons. In an embodiment, the atom
table is implemented as a hash which maps the strict equiva-
lence features of labels and nodes to distinct integers, allow-
ing inexpensive identity comparison. The “nodeAux” record
separates the mutable intrinsic and extrinsic pattern-matching
aspects of nodes from the nodes themselves. All of the
mutable state may ultimately be stored off of the context
object.

9.4.3.4.2. Basic Tree Functionality
The following SML definitions illustrate how the above
data structures can be initialized and used to implement the

basic tree functionality of the signature, according to an
embodiment:

fun foldPre f a (node as Node {children, ...}) =
let
val a' = f (node, a)
in
List.foldl (fn (node, a) => foldPre f a node) a' children
end

US 9,185,125 B2

65

-continued

66

-continued

fun size node = foldPre (fn (_, sz) =>sz + 1) 0 node
fun foldPost f a (node as Node {children, ...}) =
let
val a' = List.foldl (fn (node, a) => foldPost f a node) a children
in
f (node, a')
end
val dummyNode =
Node {ident = ~1, labelldent = ~1, height = ~1, children = nil}
val dummyNodeAux =
{node = dummyNode, parentldent = ~1, nodeType = Single, facetCtx =
NONE}
fun mkContext () = {
intern = HashTable.mkTable
(Label.hash, Label.equals) (10, Internal),
labelMap = LabelQueue.queue (10, Label.default),
aux = NodeAuxQueue.queue (10, dummyNodeAux)

fun mkNodeAux
({nodeType, facetCtx, ...} : nodeAux)
(context as {intern, labelMap, aux} : context)
label children =
let
val ident = NodeAuxQueue.length aux
val labelldent =
case HashTable.find intern label of NONE => (* intern new
label *)
let
val labelldent = HashTable.numlItems intern
in
HashTable.insert intern (label, labelldent);
LabelQueue.append (labelMap, label);
A.assertf A.normal (fn () =>
if LabelQueue.length labelMap = (labelldent + 1) then
NONE
else SOME “hash and label queue out of sink™);
labelldent
end
| SOME labelldent => labelIdent
val height = List.foldl (fn (Node {height, ...}, mx) =>
if height > mx then height
else mx) ~1 children
val node =
Node {ident = ident, labelldent = labelldent, height = height + 1,
children = children}
in
NodeAuxQueue.append

w

10

15

20

25

30

35

40

(aux, {node = node, parentldent = ~1, nodeType = nodeType,
facetCtx
= facetCtx});
List.app (fn child =>updateParent context (child, node)) children;
node
end
val mkNode = mkNodeAux dummyNodeAux
fun label ({labelMap, ...} : context) (Node {labelldent, ...}) =
LabelQueue.sub (labelMap, labelldent)
fun height (Node {height, ...}) = height
fun children (Node {children, ...}) = children
fun parent ({aux, ...} : context) (Node {ident, ...}) =
case #parentldent (NodeAuxQueue.sub (aux, ident)) of ~1 => NONE
| idx => SOME (#node (NodeAuxQueue.sub (aux, idx)))
fun isParent ({aux, ...} : context) (Node {ident = pident, ...}) node =
let
fun isParent (Node {ident, ...}) =
if ident = pident then true
else
let
val {parentldent, ...} = NodeAuxQueue.sub (aux, ident)
in
if parentIdent = ~1 then false
else isParent (#node (NodeAuxQueue.sub (aux, parentldent)))
end
in
isParent node
end
fun nodeType ({aux, ...} : context) (Node {ident, ...}) =
#nodeType (NodeAuxQueue.sub (aux, ident))
val basisSize = LabelQueue.length
val basisFold = LabelQueue.foldl
fun facetCtx ({aux, ...} : context) (Node {ident, ...}) =
#facetCtx (NodeAuxQueue.sub (aux, ident))

Copyright 2013 DB Networks.

Nodes are initialized with ground (dummy) auxiliary state
(i.e., no pattern matching), and a number of atom tables are
maintained for later efficient comparison (particularly in the
tree-difference implementation described below).

9.4.3.4.3. Function “topDownDiff”

With the above definitions, the features of a fast, top-down
tree-difference algorithm will now be described. An embodi-
ment may be implemented in SML as follows, in which the
comments in the form of “(*Note: <number>*)" correspond
to the subsequent exposition:

fun topDownDiff
context

(spec as {cost, threshold, map}) snode tnode : editMap option =

let
(* Note: 1 %)

fun replacePair (src as Node {labelldent = srcldent, ...}, tgt as Node

{labelldent = tgtldent, ...}) =

if Label.comparable (label context src, label context tgt) then

if sreldent = tgtldent andalso

let
val match =
(* Note: 2 *)
then
else
(* Note: 3 *)
(* Note: 4 *)

not (Option.isSome (facetCtx context tgt))
(* facetted targets must be checked for congruence *)

LMIdentical

case facetCtx context src
of NONE =>

(case Facet.facets (label context src)
of NONE =>

(* always matches, anyway *)
LMMatch
| SOME _ =>

US 9,185,125 B2
67

-continued

68

(* Note: 5 %)
(* not yet concrete, thus, not yet learned*)
LMMismatch nil)
| SOME {facets, ...} =>
(* Note: 6 %)
case matchNodeFacets context (facets, tgt)
of nil =>LMMatch
| fml => LMMismatch fml
val widen =
(* Note: 7%)
case (nodeType context src, nodeType context tgt) of
(Single, Single) => NONE
| (Single, nt) => SOME nt
| (Plus, Option) => SOME Kleene
| (Plus, Kleene) => SOME Kleene
| (Option, Plus) => SOME Kleene
| (Option, Kleene) => SOME Kleene
| _=>NONE
val replace =
(* Note: 8 *)
Replace {src = src, tgt = tgt, match = match, widen =
widen, edits = tdd (src, tgt)}
(* Note: 9 %)
val cost = cost context replace
in
(replace, cost)
end
else
(Replace {src = src, tgt = tgt, match = LMIncomparable, widen =
NONE, edits = NONE}, Real.posInf)
(* Note: 10 *)
and tdd (src as Node {children = schildren, labelldent = slabel, ...},
tgt as Node {children = tchildren, labelldent = tlabel, ...})

: editSeq option =
let
val slen = List.length schildren
val tlen = List.length tchildren
(* Note: 11 %)
val m : edits Array2.array = Array2.array (slen + 1, tlen + 1,
(0.0, nil))
(* Note: 12 %)
fun add ((costl, edits), edit : edit) : edits =
let
val cost2 = cost context edit
in
(costl + cost2, (edit, cost2)::edits)
end
(* Note: 13 %)
fun merge ((costl, editsl), (cost2, edits2)) = (costl + cost2,
edits2 @ editsl)
(* Note: 14 %)
fun nonTrivial (cost, pairs) = cost > 0.0 orelse not (List.null
pairs)
in

(* Note: 15 *)
List.foldl (fn (src, i) =>

let
val base = Array2.sub (m,i- 1, 0)
val srcType = nodeType context src
val edits =
if srcType = Option orelse
sreType = Kleene then base
else
add (base,Delete {src = src, tgt = NONE})
in

Array2.update (m, i, 0, edits);
i+1
end) 1 schildren;
(* Note: 16 *)
List.foldl (fn (tgt, j) =>
let
val base = Array2.sub (m, 0,j - 1)

Array2.update (m, 0, j,(add (base, Insert {src = NONE, tgt
=tgt}));
j+1
end) 1 tchildren;

US 9,185,125 B2

69 70

-continued

(* Note: 17 *)

(* Note: 18 *)

(* Note: 19 %)

(* Note: 20 *)

(* Note: 21 *)

(* Note: 22 %)

List.foldl (fn (src’ as Node {labelldent = slabel, ...}, i) =>
let

in

val srcType = nodeType context src’

List.foldl (fn (tgt' as Node {labelldent = tlabel, ...}, j)
=

let
val tdd = Future.future (fn () =>
(* descend into subtrees *)
case replacePair (src', tgt')
of pair as (Replace {edits, ...}, cost) =>
if map orelse
cost > 0.0 orelse
Option.isSome edits then
(cost, [pair])
else
(* not needed, after all *)
(0.0, nily
| _=>raise Match)
val ss =
let
val base as (cost, _) = Array2.sub (m,i-1,]
-1
in
if not (Real.isFinite cost) orelse
(Real.isFinite threshold) andalso
cost > threshold then
(* over budget *)
(Real.posInf, nil)
else
merge (base, tdd ())
end
val is =
let
val base = Array2.sub (m, i, j - 1)
val is1 as (costl, _) = add
(base, Insert {src = SOME src’, tgt = tgt'})
in
if sreType = Plus orelse
sreType = Kleene then
let
val is2 as (cost2, _) =
merge (base, tdd ()
in
if costl < cost2 then is1
else is2
end
else isl
end
val ds =
let
val base = Array2.sub (m, i - 1, j)
in
if sreType = Option orelse
srcType = Kleene then
base
else add (base, Delete {src = src’, tgt =
SOME tgt'})
end
val ms = List.foldl (fn (el as (costl, _), €2 as
(cost2, _)) =>
if cost2 < costl then e2 else el) ss [is, ds]
in
Array2.update (m, i, j, ms);
j+1
end) 1 tchildren;
i+1

end) 1 schildren;

US 9,185,125 B2

71

-continued

72

(* Note: 23 *)
let

val edits as (cost, pairs) = Array2.sub (m, slen, tlen)

if nonTrivial edits then SOME {cost = cost, edits = List.rev

pairs}
else NONE
end
end
in
(* Note: 24 *)
case replacePair (snode, tnode)
of (Replace (replacement as {edits, ...}), cost) =>

if map orelse cost > 0.0 orelse Option.isSome edits then

let

val emap : editMap = {context = context, spec = spec,
cost = cost, replacement = replacement}

in
SOME emap
end
else
NONE
| _ =>raise Match
end

Copyright 2013 DB Networks.

In an embodiment, the computation is essentially a kind of
dynamic programming that considers the replacement of a
source tree node with a target tree node, recursively, so that
only mutations at the same level (from the root of the com-
parison down) are considered. The general solution to the
ordered tree-difference problem is known to be at least order
n*, given a tree of size n. The unordered tree difference
problem is known to be NP-complete, so this simplification
may be essential to making the overall approach practical.

The flow of the algorithm can be described as follows, with
reference to the notes embedded in the SML implementation
above:

Note 1: The algorithm starts with a single call to the “repla-
cePair” utility function, which will determine the cost (i.e.,
minimum edit distance) and necessary augmentations to
replace the source node (“src”) with the target (“tgt”). If the
associated labels are incomparable, then the resulting
“Replace” variant edit object is immediately returned as
“LMIncomparable” with infinite cost. At the top level, this
indicates that the nodes are not unifiable. When called recur-
sively below, the “tdd” auxiliary function will optimize away
from such replacements.

Note 2: In computing the “labelMach”, if the source and
target nodes are identical AND if the target is not faceted, then
the match is identical.

Note 3: Otherwise, if the source facets are not yet cached
(and since identity checks failed, this implies a non-match),
then:

Note 4: If the source is not faceted, comparability implies
“LMMatch”.

Note 5: Otherwise, the source facets are not yet concrete
and a mismatch is implied (the augmentation will be com-
puted later).

Note 6: Ifthe source facets are already cached, then a utility
function “matchNodeFacets” is executed. Function “match-
NodeFacets” may be defined with the following SML.:

fun matchNodeFacets context (facets, tgt) =
let
fun addMismatch (label, fml) =
let
val facets = matchLabelFacets (facets, label)

25

30

35

40

45

50

55

60

65

-continued

in

if List.null facets then fiml
else

{label = label, facets = facets}::finl
end

case facetCtx context tgt
of NONE => addMismatch (label context tgt, nil)
| SOME ({basis, ...} =>
LabelQueue.foldr addMismatch nil basis
end

Copyright 2013 DB Networks.

The “matchNodeFacets™ function computes a list of mis-
matched facets, and returns a list of non-matching facets,
which, if nil, indicates a match (“LMMatch™), and if not nil,
indicates a mismatch (“LMMismatch™):

(1) If the target is faceted and cached (which is not true in
the usual case in which the target is a ground node), then
a basis accumulator is called for each label of its basis. If
not cached, then the function is applied to the target
label.

(2) The accumulator function calls “matchl.abelFacets”,
which may be defined by the following SML, which
accumulates only the non-matching of non-sparse fac-
ets, respecting the “MatchImmediate” optimization:

fun matchLabelFacets (facets, label) =
let
val length = Vector.length facets
fun nonMatching (idx, nm) =
if idx = length then nm
else
let
val facet = Vector.sub (facets, idx)
in
if Facet.isSparse facet then nonMatching (idx + 1, nm)
else
case Facet.probe facet label
of Facet.NoMatch => nonMatching (idx + 1, facet::nm)
| Facet.Match => nonMatching (idx + 1, nm)
| Facet.MatchImmediate =>
if List.null nm then nil

US 9,185,125 B2

73

-continued

else nonMatching (idx + 1, nm)
end
in
nonMatching (0, nil)
end

Note 7: Any necessary widening of the target “nodeType”
promoting is computed, as shown.

Note 8: A “Replace” edit variant with the match and widen
fields is computed. Then, the DP algorithm described below
recursively produces edits associated with unifying the chil-
dren of the target and source nodes, and assigns the produced
edits as the “edits” field of “Replace”.

Note 9: The cost of the “Replace” edit is computed with the
user-defined cost function, and the (edit, cost) tuple is
returned.

Note 10: The “tdd” function recursively analyzes the chil-
dren of source and target nodes, considering the various pos-
sibilities for unification. In an embodiment, the implementa-
tion is broadly based on the principles of dynamic
programming, but has been non-trivially extended:

(1) to accumulated alternative difference/unification infor-

mation as part of analysis and costing.

(2) to effect a top-down analysis, vastly reducing the time
complexity of this problem.

(3) to consider extrinsic pattern matching directly within
the analysis (also vastly reducing cost).

(4)avery flexible representation of intrinsic pattern match-
ing as a sequence of orthogonal comparison/costing/
unification primitives and combinatorial calculus.

(5) the representation of top-down extrinsic tree patterns as
single, optional, plus, and clean alternatives, differenti-
ated by the comparability predicate.

(6) potentially budgeted, cutting off branches of non-pro-
ductive analysis for efficiency.

Note 11: Like the DP algorithm, the approach is to break
the overall problem into a number of sub-problems, and to
memoize the result of each sub-problem to minimize time
complexity. Memoization is an optimization technique that
avoids repeating the calculation of results for previously-
processed inputs. The two-dimensional array “m” performs
this memoization. As per standard DP, the dimension of the
array is source-size-plus-one by target-size-plus-one in order
to represent all left comparisons and the position to the left of
the left-most nodes. The type of the memoization array is
tuples of cost/edit list pairs.

Note 12: The “add” utility function takes two arguments: a
tuple of cost/edit list pairs and a new edit, which it accumu-
lates into a new cost/edit list pair.

Note 13: The “merge” utility function merges two cost/edit
list pairs.

Note 14: The “non-trivial” utility function is a predicate
that returns true if a cost/edit list pair cannot be ignored either
due to non-zero cost or costless edits, which are possible if the
unification is being run simply to identify zero-cost augmen-
tations.

Note 15: The first phase of the algorithm considers the
possibility that a source node might be deleted to the left of all
target nodes. Since Option and Kleene source nodes admit
such deletions, they are considered costless. The cost/edit list
tuples in the zero position of the target are updated, represent-
ing deletion to the left of the left-most target node.

Note 16: The second phase is analogous to the first, but
considers target node insertions to the left of the left-most
source node, updating the source zero memoization positions.

10

15

20

25

30

35

40

45

74

Note that there is no source pattern to consider, and thus, no
analogous role for source “nodeType”.

Note 17: The third phase is the most complex, because it
considers non-degenerate source/target pairs, determining
the minimum cost between replacement, deletion, and inser-
tion.

Note 18: The cost of a potential replacement is just a
recursive application of the “replacePair” function. However,
it may or may not be needed, so it is computed lazily as a
result of the local “tdd” function. If needed, “replacePair” is
called and, if mapping is forced or replacement is non-trivial,
returns a cost/edit list pair with a single member. Otherwise,
the returned tuple is (0.0, nil) representing no cost or edits.

Note 19: The “ss” value represents the potential cost of
replacement, but only computes replacement if the base cost
(previous sub-problem) is finite and within a user-defined
budget. If not, then the cost is infinite, so that this path will be
abandoned by the DB algorithm (to avoid incurring additional
analytic cost).

Note 20: The “is” value represents the potential cost of
insertion to the right of the source position. However, if the
source is a Plus or Kleene node, there is the possibility of
replacement of the source node (i.e., unification), because this
node represents potentially more than one match. Therefore,
this costis compared with the insertion cost, and, if lower, this
cost/edit list pair is returned instead.

Note 21: The “ds” value represents the potential cost of
deletion of a source node to the right of the target position. If
the “srcType” is an Option or Kleene, then this incremental
cost is zero. Otherwise, it is added to the base.

Note 22: The “ms” is simply the minimum of replacement,
insertion, or deletion, and is memoized.

Note 23: Finally, the (source length, target length) member
of'the memoization array will contain the minimum cost/edit
list pairs, and, if non-trivial, an optional editSeq is returned
(the result of the auxiliary function “tdd”).

Note 24: As mentioned above, the “topDownDiff” function
involves a single call to “replacePair”. If the result is a
“Replace” variant, and, if mapping is forced or the cost is
non-trivial, the optional editMap is returned. Otherwise, uni-
fication is trivial and NONE is returned. This is the overall
result of the computation.

9.4.3.4.4. Function “augment”

In an embodiment, one key function of the TREE signature
is given in a utility function “augmentAux”, which takes an
“editMap” and produces a new root node which unifies the
target node (or pattern) into the source pattern. This guaran-
tees that the new construct and ones like it will be recognized
in the future. An implementation in SML is illustrated as
follows:

fun augmentAux
({context = context as {aux, ...}, spec,
replacement as {src, ...}, ...} : editMap) =
let
(* Note: 1 *)
fun augmentNodeAux {src, tgt, match, widen, edits} =
(case match
(* Note: 2 *)
of LMMismatch fml =>
let
val srcLabel = label context src
val tgtLabel = label context tgt
val ({basis, ...}, fml) =
if List.null fml then
let
(* this invariant was implied in topDownDiff *)
val fetx as {facets, basis} =

US 9,185,125 B2

75

-continued

76

-continued

initFacetCtx context (src,
Option.valOf (Facet.facets srcLabel) ())
in
(fetx, matchNodeFacets context (facets, tgt))
end
else
(* so was this one *)
(Option.valOf (facetCtx context src), finl)
in
List.app (fn {label, facets} =>
augmentFacets (basis, facets, label)) fiml
end
I_=>()
(* Note: 3 %)
Option.app (fn nt => updateNodeType context (src, nt)) widen;
(* Note: 4 %)
case edits
of NONE => false
| SOME ({edits, ...} : editSeq) =>
(* Note: 5 %)
let
fun skip (_, hasNRs) = hasNRs
fun edit (edit, hasNRs) =
case edit
of Replace replacement =>
let
val hasNRs’ = augmentNode Aux replacement
in
hasNRs orelse hasNRs’
end
| _ =>true
in
foldEdits context skip edit false (edits, src)
end)
(* Note: 6 %)
val spec = specUpdateMap (spec, false)
fun augmentTree ({src, edits = NONE, ...} : replacement) = src
| augmentTree ({src, edits = SOME {edits, ...}, ...}
replacement) =
let
fun accept (src, tgt) =
let
val aug =
case topDownDIiff context spec sre tgt
of NONE => SOME src (* works as is *)
| SOME (emap as {cost, ...}) =>
if Real.isFinite cost then
SOME (augmentAux emap)
(* whatever it takes *)
else
NONE (* not possible *)
in
Option.app (fn aug =>
case nodeType context aug
of Single => updateNodeType context (aug, Plus)
| Option => updateNodeType context (aug, Kleene)
I =>()) aug;
aug
end
fun skip (child, (nchildren as child*::nchildren’, true)) =
(* attampt to coalesce *)
(case accept (child’, child)
of NONE =>
(child::nchildren, false)
| SOME child*’ =>
(child®’ ::nchildren’, true))
I skip (child, (nchildren, _)) = (child::nchildren, false)
fun edit (Replace replacement, (nchildren, _)) =
((augmentTree replacement)::nchildren, false)
| edit (Insert {tgt, ...}, (nchildren, new)) =
let
fun insert tgt =
(updateNodeType context (tgt, Option);
(tgt::nchildren, true))
fun unique node =
case nodeType context node
of Single => true
| Option => true
| _=>false

10

15

20

25

30

35

40

45

50

55

60

65

in
case nchildren
of nil => insert tgt
| nchild::netl =>
if new orelse
unique nchild then
case accept (nchild, tgt)
of NONE =>
(* could not replace, just insert *)
insert tgt
| SOME nchild’ =>
(nchild’::netl, true)
else
insert tgt
end
| edit (Delete {src, ...}, (nchildren,)) =
(case nodeType context src
of Single => updateNodeType context (src, Option)
| Plus => updateNodeType context (src, Kleene)
I =>();
(src::nchildren, false))
val (nchildren,) =
foldEdits context skip edit (nil, false) (edits, src)
in
mkNodeAux
(NodeAuxQueue.sub (aux, identity src))
context (label context src) (List.rev nchildren)
end
in
if augmentNodeAux replacement then
augmentTree replacement
else
src
end

Copyright 2013 DB Networks.

The notes in the SML above will now be described:

Note 1: The utility function “augmentAux” unifies the
intrinsic patterns of the source tree as required (given as a
replacement). This is all represented as mutable state within
the context. Thus, this function returns true if the extrinsic
state must be modified (resulting in a new tree), and returns
false if only intrinsic changes were made to mutable state, so
that the original tree can be returned.

Note 2: If the match is a mismatch, then, if the mismatch
list is null, the “topDownDiff” algorithm has indicated that
the facet context for the source node has not yet been initial-
ized. Thus, the fact context is initialized here, and then this
context and the mismatching unifications are considered here.
Otherwise, the cached context and previously-computed mis-
match list are considered here.

Note 3: For each mismatch, the function “augmentFacets”
is applied. This function updates the basis with the new label,
and then calls the client-defined augment method with the
same label (a concrete implementation is discussed below):

fun augmentFacets (basis, facets, label) =
(LabelQueue.append (basis, label);
List.app (fn facet => Facet.augment facet label) facets)

Note 4: The widening of node types are applied directly.

Note 5: If there are no edits, then false is returned. No new
tree is required since all unifications were intrinsic.

Note 6: If edits are given, then the auxiliary function
“foldEdits™ is applied. This function traverses the children of
the given node, applying the first user-defined accumulator
function until the first edit is applicable. Then it traverses the
edits, applying the second user-defined accumulator to the
edit. It repeats this pattern until children or edits are
exhausted, and returns the final value of the accumulator. It
may have a SML signature of:

US 9,185,125 B2

77

val foldEdits :
context -> (node * ‘a-> ‘a) -> (edit * ‘a->‘a)->‘a
-> (edit * cost) list * node -> ‘a

Note 7: Compute a new specification. The new specifica-
tion is like the original, but with the map override set to false
(this will be in scope for the “augmentTree” function).

Note 8: The “augmentTree” function computes the new
tree, if necessary, for unification.

9.4.3.4.5. Function “augmentlabel”

Function “augmentlabel” may be implemented in SML as
follows:

fun augmentLabel context (node, label”) =
let
val label = label context node
in
if Label.equals (label, label”) then
false
else
let
val fetx =
case facetCtx context node
of NONE =>
Option.map (fn facets =>
initFacetCtx context (node, facets ()))
(Facet.facets label)
| fetx => fotx
in
case fotx
of NONE =>
(* trivially matched *)
false
| SOME {facets, basis} =>
(augmentFacets
(basis, matchLabelFacets (facets, label’), label’);
true)
end
end

Copyright 2013 DB Networks.

9.4.4. Parse Tree Transformation

9.4.4.1. Concrete “Label” Structure

The generic LABEL signature described above (which
operates in terms of trees of any facetted, labeled nodes, per
the above definitions), which is isomorphic to the language
system parse trees, may be implemented using the elements
described in the following subsections (excluding trivial ele-
ments).

9.4.4.1.1. Data Type “Label”

Datatype “label” is a single SML data type representing all
possible parse nodes. It is informally, but directly, presented
below as SML (the “SQLAux” components are the polymor-
phic parse-tree nodes produced by language system 1325):

structure P = SQLAux
datatype label =
SetOp of {
op’ : P.setOperation,
all : bool

| ValuesClause

| Select

| CTextExprList

| ExprListOption

| ResTargetList

| IntoClauseOption
| TableRefList

| ExprOption

| ExprList

| SortByListOption

10

15

20

25

30

35

40

45

50

55

60

65

78

-continued

| SortByList

| LockingClauseList

| SelectLimitOption

| CTextExpr

| TypeCast

| FuncCall of {
aggStar : bool,
aggDistinct : bool

| AExpr of P.aExprKind
| Null Test of P.nullTestType
| BooleanTest of P.boolTestType
| SubLink of P.subLinkType option
| XmlExpr of {
op’ : PxmlExprOp,
xmloption : PxmlOptionType

| XmlSerialize of PxmlOptionType
| ColumnRef
| AExprConst of P.value
| ParamRefOption
| ParamRef of P.paramRef
| AIndirection
| CaseExpr
| ArrayExpr
| RowExpr
| MinMaxExpr of P.minMaxOp
| CoalesceExpr
| CurrentOfExpr of int
| TypeNameOption
| TypeNameList
| TypeName of {
timezone : bool,
setof : bool

| ResTarget
| IntoClause of P.onCommitAction
| TableRef
| SortBy of {
sortByDir : P.sortByDir,
sortByNulls : P.sortByNulls

| LockingClause of {
forUpdate : bool,
noWait : bool

| SelectLimit

| RangeVar of {
istemp : bool,
inhOpt : P.inhOption

}

| RangeFunction

| JoinExpr of {
jointype : PjoinType,
isNatural : bool

| RangeSubselect

| NameList

| Name of string

| NameOption

| AliasOption

| Alias

| ColumnDefList

| ColumnDef of bool

| JoinQualOption

| JoinQual

| CaseWhenList

| CaseWhen

| IndirectionElList

| StringIEl

| AlndicesIEl

| NullIEL

| SetToDefault

| ConnectByOption

| ConnectByClause of bool
| PriorExpr

| Insert

| InsertColumnItemList
| InsertColumnItem of string

US 9,185,125 B2

79

-continued

| SelectStmtOption

| WhereOrCurrentClauseOption

| WhereOrCurrentClause

| SetClauseList

| Update

| Delete

| AlterSessionSet of string

| AExprList

| Exec

| ExecModule of string option

| CompoundStmt

| ModuleParamList

| ModuleParam

| MPVConstValue

| MPVKeyword

| MPVParamVar of bool

| MPVNullValue

| MPVDefault

| ExecOptionList

| XORecompile

| XOResultSets

| ResultSetDefListOption

| ResultSetDefList

| RSDInline

| RSDObject

| RSDType

| RSDXml

| InlineResultSetDefList

| InlineResultSetDef of bool option
| Use

| SetStmt

| SetBinaryClause of bool

| SetExprClause

| Block

| UpdateText of {bulk : bool, withLog : bool}
| UpdateTextSrcOption

| UpdateTextSrc

| UpdateTextObject

| SetTransaction

| TransactionIsolation of P.transactionIsolation
| TransactionMode of P.transactionMode
| TransactionRollbackSegment

| IfStmt

| SimpleStmtOption

| TopClauseOption

| TopClause of {percent : bool, withTies : bool}
| LtdTableHintList

| LtdTableHint of P.limited TableHint
| CommitStmt

| CommitClause

| CommitScopeOption

| CommitAuxOption

| CommitScope of P.commitScope
| CommitAux

| FromList

| FromListElm of bool

| TableHintList

| TableHint of int

| Index TableHint of bool

| THIndexForceSeekOption

| THIndexForceSeek

| SelectType

| SqlStatement

Copyright 2013 DB Networks.

9.4.4.1.2. Function “mkSqlStmt”

Function “mkSqlStmt” generates a Tree.node for an input
Tree.context and top-level parse tree statement (SQLAux-
statement). In other words, it maps concrete parse trees to
isomorphic nodes which can be manipulated by the DP
machinery discussed above, unified in the pattern-matching
sense, and is crucial to the system’s operation as an effective
injection detector. The isomorphism implemented by this
function is trivial, i.e., parse-tree nodes map one-for-one to
Tree.nodes, except for a few crucial cases found by a combi-
nation of design and empirical evidence. This procedure may

10

15

20

25

30

35

40

45

50

55

60

65

80

be described informally with SML source code, which recur-
sively generates a Tree.node root for a top-level parse tree
statement, as follows:

The notes in the SML above will now be discussed:

Note 1: In most cases, optional components are mapped to
explicit option nodes to simplify extrinsic pattern matching in
their parents (i.e., a single node, with or without children, is
always present).

Note 2: Expressions are the most complex type, dependent
upon the parse node expression variants.

Note 3: Left-associative AExpr nodes are destructured as
lists of expressions to give the extrinsic pattern matcher some-
thing more “bushy” to work on. This approach, which has
non-trivial benefits in the overall number of false-positive
rejections, was discovered empirically by direct experimen-
tation with sampled applications.

Note 4: This normalizes SQL Server™ module naming.

Note 5: The top-level result of this function is always
“SqlStatement”, with the children resulting from “mkNode”
above.

9.4.4.1.3. Function “hash”

Function “hash” maps each of the label variants to ordinal
integers. The hash may comprise a bitwise XOR of these
integers. The state associated with the variants is recursively
analyzed.

9.4.4.1.4. Function “equals”

Function “equals” provides the system equals operator,
since data types are “eqtypes”, defined recursively.

9.4.4.1.5. Function “comparable”

Function “comparable” returns false if the labels are dif-
ferent variants. For “AExpr”, the function also requires that
the associated expression kinds match. This ensures that
intrinsic matching is not attempted between dissimilar
expressions. For “ExecModule”, the function requires that
module names are equal. This ensures that intrinsic matching
is not attempted for argument spectra from different stored
procedures. This approach was discovered empirically with
actual application data.

9.4.4.2. Concrete “Facet” Structure

FACET may be implemented concretely for the TREE
structure. A complete implementation may be given in SML
as follows:

9.4.5. Detector

In an embodiment, the DS6 sytnactic pattern-based injec-
tion detector has the following interface to the database fire-
wall, described herein, and may have the following imple-
mentation that utilizes the above functionality:

function “score’: computes a score given an integral data-
base identifier, and “sqlldent” object (referring to an SQL
statement). The form of the “sqlldent” may be represented
using the following SML, which reflects the fact that some
statements have children (e.g., a stored procedure call with an
SQL-text argument) which are also statements, and therefore,
must also be analyzed recursively:

type dbKey = int

type sqlld = dbKey

type ‘s composite” = {
base : sqlld,
children : *s list

datatype ‘s composition’ = SIMPLE | COMPOSITE of ‘s composite’
datatype sqlldent =

Sqlldent of {sqlId : sqlld, composition : sqlldent composition’ }
(* ground it all *)

US 9,185,125 B2

81

-continued

type composite = sqlIdent composite’
type composition = sqlldent composition’

Copyright 2013 DB Networks.

The resulting score may be represented in the following
SML form:

datatype error =
ERR_PARSE of SQLAux.error (* general failure to lex/parse *)
| ERR_PATTERN (* there is no valid pattern due to parse errors *)
| ERR_BUDGET (* budget exceeded, no difference/augmentation
possible *)
type score = {
notAppVariation : real option, (* 0.0 - 1.0 *)
nonMatching : int,
errors : error list

}

Copyright 2013 DB Networks.

The score represents the level of confidence that DS6 algo-
rithm 1950 has in the proposition that a statement is an attack
and not likely arising from application variation. In an
embodiment, DS6 algorithm 1950 may be implemented as
follows, according to an embodiment:

(1) Recursive analysis: if the “ident” passed above repre-
sents a composite statement, then the base case and all
children are analyzed. Otherwise, just a single case is
analyzed. However, the analysis is the same in both
cases, and is simply accumulated in the composite case.

(2) Caching: when scoring a particular SQL statement, a
fast in-memory cache may be consulted first. Thus, the
same statement is not repeatedly analyzed when results
are returned from the cache.

(3) Cache miss: on a cache miss, the SQL text is first
located in a metadata system (MDS). The MDS is an
embedded SQL database which is queried. The resulting
SQL text is then parsed by language system 1325 (dis-
cussed above), and the resulting SQL text and parse tree
are considered.

(4) If a parse error occurs, then the statement cannot be
scored by DS6 algorithm 1950, and an error result is
returned (e.g., to the caching layer).

(5) On parse success, the statement is statelessly matched
to a group identifier by top-level statement type (in the
parse tree). This group defines a common context for
pattern matching.

(6) A cache matching a group identifier to a “Tree” pattern
is checked to find the tree pattern associated with the
group:

(7) If not found, then a pattern is synthesized as follows:
(a) The set of all matching statements matching the

group (by type, pre-computed by language system
1325, and stored in MDS) is read from the database
(the members of this set were established by learning
manager 1368 and stored persistently).

(b) A digest based on these statement identifiers is com-
puted and a DS6 database table is consulted for a
persistently stored pattern.

(c) If the persistent pattern is not found in the database,
then a pattern is built:

(1) Each statement of the group is considered in turn.

(i1) Each statement is parsed as above.

(ii1) For the first statement, a new pattern, entirely
grounded by the statement is constructed as
described above.

10

15

20

25

30

35

40

45

50

55

60

65

82

(iv) For subsequent statements, the top-down tree dif-
ference and unification information is computed
between the accumulating pattern and the aug-
menting statement.

(v) If augmentation is required, the statement is uni-
fied with the pattern.

(vi) The final pattern, unifying all of the statements of
the group is written to the persistent database and
returned.

(d) If a persistent pattern is found, it is validated:

(1) The previously computed digest is compared with
a persistent form stored with the pattern. If it
matches, then no changes have invalidated the pat-
tern, and it is returned.

(i) If the persistent pattern is invalidated, due to
changes in learning manager 1368, then a new ver-
sion of the pattern is created, per the above proce-
dure, the persistent store is updated, and the pattern
is returned.

(8) If a cached pattern is found, then it is validated:

(a) An in-memory generation identier is checked. A
match indicates that no changes have been made in
learning manager 1368. Thus, the pattern is trivially
validated.

(b) The digest for the group is computed, as per above. If
it matches the pattern, it is validated and returned.

(c) If the digest fails to match, then the pattern is freshly
created, per the above procedure, the persistent store
is updated, and the pattern is returned.

(9) The in-memory pattern cache is updated with the vali-
date pattern.

(10) A top-down difference is computed, per above, for the
statement with respect to its pattern.

(11) If the statement is trivially unified with the pattern, a
Zero cost is associated with the result.

(12) If the statement is non-trivially unified, the cost func-
tion used by the difference algorithm is non-trivial, and
the cost is returned for consideration. This cost function
may be given by the following SML:

fun cost context edit =

case edit
of Tree.Replace {match, widen, edits, src, ...} =>
let
valm =
case match
of Tree.LMIdentical => 0.0
| Tree. LMMatch => 0.0
| Tree. LMMismatch nil => 1.0
| Tree. LMMismatch fiml =>
let
val {facets, ...} =
Option.valOf (Tree.facetCtx context src)
val bits =
BitArray.array (Vector.length facets, false)
in
List.app (fn {facets, ...} => List.app (fn facet =>
BitArray.update (bits, Facet.index facet, true))
facets) finl;
Real.fromInt
(BitArray.foldl
(fn (true, nm) =>nm + 1
| (false, nm) => nm) O bits) /
Real.fromInt (Vector.length facets)
end
| Tree. LMIncomparable => raise Match
val lcl = case widen of NONE =>m | SOME _ =>m +
((1.0-m)/2.0)
val st = case edits of NONE =>0.0 | SOME {cost, ...} => cost
in
lel + st

US 9,185,125 B2

83

-continued

end
| Tree.Insert {tgt, ...} => Real.fromInt (Tree.size tgt)
| Tree.Delete {src, ...} => Real.fromInt (Tree.size src)

Copyright 2013 DB Networks.

(13) The resulting score is cached in memory for subse-
quent use.

(14) The cost of all of the potentially recursive events is
accumulated, and then translated into a score measuring
the systems confidence that the statement can be unified
with the associated patterns via the formula:
score=0.5°°%

(15) The final value of notAppVariation returned is: 1.0—
score. This reflects the DS6 confidence in the proposi-
tion discussed above.

function “createEvent™: given an event identifier and an
“sqlldent” object, stores, in DS6’s persistent database, suffi-
cient information to describe DS6’s attack evidence for sub-
sequent reporting and archiving (regardless of how learning
sets and patterns may be modified in the future). This function
may be implemented as follows:

(1) Record top-level information about the event from the

DS6 algorithm’s point-of-view:

(a) Event identifier.

(b) Profile (passed by learning manager 1368).

(c) Database (also, from learning manager 1368). All
DS6 scoring may be in the context of a specific data-
base).

(d) SQL identifier (of the top-level statement, if recur-
sive).

(e) top-level score.

(2) For each base or recursive SQL text associated with the
statement, utilize the same procedure as for scoring. For
each costed comparison greater than 0.0, create auxil-
iary information including:

(a) Event identifier.

(b) SQL identifier.

(c) pattern digest.

(d) cost.

(e) digest.

(®) reified pattern (for subsequent regeneration and
reporting).

(g) group identifier.

9.5.DS8

In an embodiment, a DS8 algorithm (not shown) is pro-
vided to test for lexical errors, e.g., in SQL-based operations.
The DS8 algorithm may analyze the learned set from DS1
algorithm 1910 for lexical errors. The templates thus
extracted can be stored in a learned set of the DS8 algorithm.

In an embodiment, if the learning phase of the DS8 algo-
rithm is initiated (e.g., by an operator or automatically), the
DS8 algorithm iterates through each template in the learned
set of templates generated by DS1 algorithm 1910. For each
template in this learned set of templates from DS1 algorithm
1910, the DS8 algorithm determines whether the template has
lexical error(s). If the DS8 algorithm determines that the
template has lexical error(s), the template is stored in a
learned error set by the DS8 algorithm.

In an embodiment, in its scoring phase, the DS8 algorithm
uses the language system analysis of an SQL-based event to
be scored to determine if the target statement has lexical
error(s). The DS8 algorithm can mark up events with the
concept “DS8.lexicalError”. If there was no lexical error
detected, the “DS8.lexicalError” concept is set to 0.0 to
reflect the fact that the target statement is not likely an attack

10

15

20

25

30

35

40

50

55

60

65

84

from this point of view. On the other hand, if one or more
lexical errors are detected, the DS8 algorithm computes this
quantity based on the background frequency of lexical errors
within the learned set. This computation computes the con-
ditional probability that the lexical error(s) observed (by type)
might have arisen from the background error frequencies
within the learned set. This probability is then returned as the
value of the “DS8.lexicalError” concept.

9.6. DS9 and DS10

In an embodiment, the goal of DS9 algorithm 1960 and
DS10 algorithm 1970 is to match a suspected SQL injection
string with a component of an HTTP web request. If there is
a positive match, then the algorithms determine that the
HTTP request is being used to deliver an SQL injection. The
information gained from such a match can be tremendously
useful.

Both algorithms may extract the same HTTP data field(s),
but may use different sources for HT'TP data. Furthermore, in
embodiments, only DS10-connected devices (e.g., web
agents) can perform real-time response and session blocking.

FIG. 23 illustrates the data feeds for both DS9 algorithm
1960 and DS10 algorithm 1970, according to an embodiment.
DS9 algorithm 1960 uses an internal passive TCP stack 2305
to reassemble traffic sniffed by a passive network tap 2305 on
at least one network port of a database firewall. This port can
be connected to a properly-configured span port of a router
that handles the HTTP traffic to web applications. If the
network traffic is encrypted, the decryption key should be
provided by the administrator so that DS9 algorithm 1960 can
provide clear text to HT'TP parser 2325 via decryption 2320.
HTTP parser 2325 tracks the HTTP protocol used on each
monitored connection, and extracts the information from pos-
sible attack points. The extracted information is provided to a
request queue 2350 as a request object 2355. DS10 algorithm
1970 can use an outgoing web socket connection 2335 to
connect to external web agents 2330. A web-agent-specific
protocol can be used to transfer attack point information from
the HTTP request and responses to request queue 2350 in a
request object 2355 via web agent interface 2340.

In an embodiment, the goal of DS9 algorithm 1960 and
DS10 algorithm 1970 is to match an SQL injection string with
data from an attack point. Both algorithms may accomplish
this using the following steps:

Step 1: Receive a suspected SQL injection string.

Step 2: Generate or otherwise determine a time window
from the timestamp of the SQL injection string and the
database command that contained it. This time window
may be dynamic based on the throughput and/or mea-
sured latency of the relevant application server(s).

Step 3: Search or filter request queue 2350 to extract
request object(s) 2355 within the determined time win-
dow. Each request object 2355 contains the data from
suspected attack points in the HT'TP requests, as well as
a timestamp. These attack points may include, for
example, the cookie, the Universal Resource Locator
(URL) query, the POST data, and/or any unusual values
in the HTTP header tags.

Step 4: Attempt to match the data in request object(s) 2355
to the suspected SQL injection string. For instance, the
algorithms may attempt to match the URL query of the
HTTP request, the cookie of the request, and/or the
POST data of the request to the SQL injection string.
Matching an HTTP cookie to the SQL injection string
can be complicated, since the cookie value may be
encrypted, unencrypted, encoded, or plain text. Accord-
ingly, the algorithms can attempt to decode a cookie
before attempting to find a match to the suspected SQL

US 9,185,125 B2

85

injection string. For instance, the following sub-steps

may be performed for cookie matching:

Sub-Step A: Receive the cookie from request object
2355.

Sub-Step B: Attempt to decode the cookie. Initially, it
may be determined ifthe cookie encoding method has
been preconfigured. In an embodiment, an adminis-
trator can perform this preconfiguration or provide a
hint as to what encoding method is used. For instance,
operator interfaces module 1395 may allow an admin-
istrator to insert script code to perform custom decod-
ings. If the encoding method is preconfigured, the
cookie can be decoded. Otherwise, all known cookie-
decoding methods may be attempted until the cookie
is either decoded or no more cookie-decoding meth-
ods remain to be tried. Examples of cookie-encoding
methods comprise Base64, Base96, and Hexadeci-
mal. Ifthe cookie is unable to be decoded, no match is
returned.

Sub-Step C: If the cookie is successfully decoded, per-
form the comparison of the cookie with the suspected
SQL injection string. If a match is found, the match is
returned (e.g., with the cookie tag). Otherwise, if no
match is found, no match is returned.

Step 5: If data in request object(s) 2355 matches the sus-

pected SQL injection string, the match is recorded, and

a score of 1.0 can be returned. In addition, DS10 algo-

rithm 1970 may also notify web agent 2330. If no match

is found, a score of 0.0 can be returned.

In an embodiment, DS10 algorithm 1970 performs a
release-hold calculation. Specifically, DS10 algorithm 1970
may periodically receive a “done event” with a timestamp.
DS10 algorithm 1970 can use this timestamp to calculate the
point in time at which it is known that no attacks occurred, and
release all responses being held which occurred before that
point in time.

FIG. 24 illustrates the system timing in the context of the
release-hold management of DS10 algorithm 1970, accord-
ing to an embodiment. It is always true that T,>T,>T,, and
that T,<T,. Once all database commands have been pro-
cessed that are T<T,, the release-hold command can be issued
for time Ty, Inside the database firewall, this is done via the
“done event” mentioned above. Specifically, the “done event”
is received by DS10 algorithm 1970 at T,. T, is calculated
by DS10 algorithm 1970 as T,-T,, where T, represents an
estimate of the maximum delay between T,, when the web
agent received the request, and T,, when the database com-
mand is issued. T, may be calculated on the basis that T, is
always less than T;-T,, which can be measured exactly. Once
calculated, Ty, can be sent to the web agent.

9.7.DP14

In an embodiment, DP14 algorithm 1980 detects search
patterns in SQL operations that may cause a denial of service.
There is no learning phase in DP14 algorithm 1980. Rather,
patterns are analyzed only during the scoring phase in a
stateless manner. Specifically, DP14 algorithm 1980 may use
the syntax analysis 1335 of language system 1325 to examine
the pattern parameters to any “LIKE” clauses or other poten-
tially time-consuming clauses in SQL inputs. If the clause
(e.g., LIKE clause) is detected with a leading wildcard pattern
(either as part of the static SQL or as part of a passed-in
parameter or a parameter to a function that creates a search
filter, e.g., to the LIKE operation), a concept
“DP14.dosPatterns” may be set 1.0. If no such patterns are
detected, “DP14.dosPatterns™ is instead set to 0.0.

10

15

20

25

30

35

40

45

50

55

60

65

86

9.8. DP15

In an embodiment, a DP15 algorithm (not shown) is pro-
vided that looks for denial-of-service and performance issues
onthe database by using a learned set that predicts the runtime
of SQL statements.

In a learning phase, the DP15 algorithm may extract per-
formance parameters for each learned SQL operation (e.g.,
each SQL template in the learned set of DS1 algorithm 1910).
For example, these parameters may include, without limita-
tion, time from execute dispatch to first response from data-
base server (e.g., in nSec), number of rows returned, amount
of'data returned in bytes, and/or time from execute dispatch to
final result on request. For each SQL template, a minimum,
maximum, and standard deviation may be calculated for each
of these parameters, and this data may be stored on a per-
template, per-database basis. The average frequency of each
operation may also be calculated.

In its scoring phase, the performance metrics for an opera-
tion being scored may be calculated and compared by the
DS15 algorithm to the stored learned per-template, per-data-
base performance parameters. The DS15 algorithm may then
set a “DP15.exceedsMargins™ concept based on the perfor-
mance metrics. For example, the “DP15.exceedsMargins”
concept may be set to 1.0 if any of the performance metrics
fall outside one standard deviation of their learned values.
Otherwise, the “DP15.exceedsMargins™ concept may be set
t0 0.0.

In an embodiment, the DS15 algorithm may use a compre-
hensive statistical kernel function that predicts performance
metrics, based on time of day, location in business cycle,
performance of groups of operations, etc. to identify dis-
tressed database situations that are not related to a specific
statement.

10. Web Agents

In an embodiment, a Database Firewall (DBFW) Web
Agent is provided. The DBFW Web Agent may communicate
with and receive directed actions from one or more compo-
nents of system 1300 (e.g., mitigation module 1385 and/or
master scorer 1365). The DBFW Web Agent is a TCP proxy-
based application that both provides the database firewall
with key information, and provides the database firewall with
the ability to effect the outcome of an SQL injection attack. It
is considered a slave device to the database firewall, which
may support many such agents simultaneously. DBFW Web
Agent is utilized as one of the protective components of a
server-based system.

The DBFW Web Agent can perform any or all of the
following operations: gather statistics on web traffic, block or
redirect individual responses to suspected attacks, and/or
block or redirect all requests by a designated session. A
DBFW Web Agent can be a stand-alone device or embedded
in any or all of the following system components: network
firewall, application firewall, load balancer, and/or applica-
tion front-end web server application. The web agent may
monitor HTTP traffic for new servers, and notify the database
firewall of their existence, so that monitoring/blocking can be
easily configured for them.

10.1. Database Firewall Module

In an embodiment, the DBFW Web Agent may be imple-
mented in the form of a set of Apache2-based modules. FIG.
25 illustrates an arrangement of components, according to an
embodiment. These components include a browser or other
client application 2510 (e.g., providing the user interface), a
database firewall 2520 (e.g., system 1300), an Apache server
2530, a web general socket module 2540 (“ModWeb-
Socket”), and implementation-specific modules 2550
(“mod_dbfw_agt”) and 2560 (“mod_websocket_dbfw™).

US 9,185,125 B2

87

Modules 2540, 2550, and 2560 represent the components of
an implementation of a DBFW Web Agent module. As illus-
trated, web traffic flows through mod_dbfw_aft 2550 and
control traffic flows through mod_websocket_dbfw 2560.

In an embodiment, mod_dbfw_agt 2550 logically sits
between browser 2510 and the application, and performs the
actual real-time traffic monitoring. For each HTTP request
received, mod_dbfw_agt 2550 may perform the following
logic:

Step 1: Analyze the request to determine if it needs further
action. For instance, mod_dbfw_agt 2550 may analyze
the request to determine if module 2550 is enabled on the
corresponding web service. If action on the correspond-
ing web service is enabled, further steps are taken. Oth-
erwise, if action on the corresponding web service is
disabled, the request is forwarded to the application.

Step 2: If action by mod_dbfw_agt 2550 on the web service
corresponding to the request is enabled, mod_dbfw_agt
2550 determines whether it should block the request/
session. Specifically, mod_dbfw_agt 2550 may examine
the request for attack points.

Step 3: If mod_dbfw_agt 2550 identifies one or more
attack points, it may extract key information to send to
database firewall 2520. This information can be used at
database firewall 2520 by DS10 algorithm 1970,
described above, to correlate with a suspected attack. If
a correlation is found, then database firewall 2520 can
command the DBFW Web Agent (e.g., mod_dbfw_agt
2550) to block the response to this request. Otherwise,
the request can be forwarded by mod_dbfw_agt 2550 to
the appropriate application.

An HTTP request can comprise various attack points,
which can be identified by mod_dbfw_agt 2550 (e.g., in Step
2 above), including, without limitation, the URL query,
header field, and POST or PUT data (e.g., via form data or in
the hidden data of an HTML page). Applications perform
their functions in various ways. Some applications keep
application state in the query or hidden data. This state may be
used in queries to the database in order to find the next step of
an operation. For example, some applications may record
some of the optional tag information in a header field of an
HTTP request into the database. Thus, this tag information, if
unchecked, represents an opening for attack. Accordingly, in
an embodiment, mod_dbfw_agt 2550 identifies the tag infor-
mation as a point of attack, and passes this tag information to
database firewall 2520 to be checked for variant information.

In an embodiment, in addition to the request processing
described above, mod_dbfw_agt 2550 also performs
response processing. This response processing may comprise
extracting data for database firewall 2520 and/or a holding
operation. Specifically, according to an embodiment, the
response processing of mod_dbfw_agt 2550 may comprise
the following steps for each response received (e.g., from an
application):

Step 1: Analyze the response to determine if it needs further
action. For instance, mod_dbfw_agt 2550 may analyze
the response to determine if module 2550 is enabled on
the corresponding web service. If action on the corre-
sponding web service is enabled, further steps are taken.
If action on the corresponding web service is disabled,
the unaltered request is forwarded to browser 2510.

Step 2: If action by mod_dbfw_agt 2550 on the web service
corresponding to the response is enabled, mod_dbf-
w_agt 2550 extracts response information and sends the
extracted information to database firewall 2520.

Step 3: After sending the extracted response information to
database firewall 2520, mod_dbfw_agt 2550 determines

10

15

20

25

30

35

40

45

50

55

60

65

88

whether it should hold the response (e.g., based on a
communication from database firewall 2520). If
mod_dbfw_agt 2550 determines that it should not hold
the response, it forwards the unaltered response to
browser 2510. Otherwise, mod_dbfw_agt 2550 holds
the response until either the hold is released or an action
is directed by database firewall 2520. In order to provide
reliability, mod_dbfw_agt 2550 may maintain a hold
timer in case database firewall 2520 is delayed in its
response, and send timeout information to database fire-
wall 2520 if the hold timer expires.

Step 4: If an action is directed by database firewall 2520,
mod_dbfw_agt 2550 performs the directed action for the
response (e.g., forwarding the response to browser 2510,
blocking the response, etc.).

From the perspective of browser 2510 or other client, its
request may result in any one of a plurality of configured
outcomes, depending on the configuration of database fire-
wall 2520 and/or the correlation determined by DS10 algo-
rithm 1970. An administrator can configure the appropriate
directed action based on a security policy. For instance, the
potential directed actions may comprise one or more of the
following:

(1) Sending a “please wait” communication to the client,
which may hold the connection open, e.g., to allow fora
trace-back to the client and/or slow robotic clients by
using up their threads.

(2) Redirecting the client, which allows the system to
present the user with more information as to what hap-
pened and what the user can do about it.

(3) Closing the connection, which provides the least infor-
mation to the potentially attacking client.

(4) Sending a custom message to the client.

(5) Forwarding the normal (e.g., unaltered) webpage to the
client.

FIG. 26 illustrates the timing of a DBFW Web Agent,
according to an embodiment. Specifically, FIG. 26 illustrates
the progress of an HTTP request through the system and the
other actions that it propagates and upon which it depends. As
illustrated, the request travels normally from Steps 1 through
5. Step 6 is where database firewall 2520 must make the
decision to either release or block the request. For example, if
database firewall 2520 decides to release the request, arclease
message is sent to server 2530 (e.g., to mod_dbfw_agt 2550)
in Step 6a, which forwards the response to browser 2510 in
Step 7a. On the other hand, if database firewall 2520 decides
to block the request, a reject message (e.g., comprising a
directed action) is sent to server 2530 (e.g., to mod_dbfw_agt
2550) in Step 6b, which performs a directed action in Step 7b
(e.g., a redirection).

In an embodiment, mod_websocket_dbfw 2560 performs
all of the communications with database firewall 2520. For
instance, mod_websocket_dbfw 2560 may use a custom
inter-process communication (IPC) mechanism to communi-
cate with each instance of mod_dbfw_agt 2550. This IPC
mechanism is illustrated in FIG. 27, according to an embodi-
ment. Specifically, FIG. 27 shows a multiplexing scheme
where the thread running the communications to the engine of
database firewall 2520 (e.g., via websocket mod_web-
socket_dbfw 2560) manages and communicates with one or
more DBFW agents (e.g., mod_dbfw_agt 2550) which
handle the actual interception of traffic and pending of
requests. In addition, the illustrated queues QO-QN queue
requests and responses regarding single requests to be scored
and/or analyzed. The IPC mechanism may be specific to the

US 9,185,125 B2

89
illustrated Apache-based DBFW Web Agent, with other
DBFW Web Agents having other processing models with
different IPC requirements.

10.2. Web-Tier Interface

In an embodiment, to gain the full benefit from SQL injec-
tion protection, an interface is provided between database
firewall 1520 and a web tier monitoring point (e.g., DBFW
Web Agent). This web-tier interface provides a means to
gather web access information (e.g., URL/Uniform Resource
Identifier (URI), POST parameters, cookie values, etc.) along
with optional context information (e.g., sessions, authenti-
cated users, etc.). This information may be used to further
discriminate the activities between the application server and
the database server to improve the sensitivity and reduce the
false positive frequency of SQL injection detection.

In addition, if the web-tier device (e.g., DBFW Web Agent)
is capable of blocking web-user activity, the web-tier inter-
face can be used to identify user sessions that are potentially
creating an SQL injection threat.

In an embodiment, the web-tier interface comprises a num-
ber of RPC entry points supported by web-tier agents and
called dynamically by database firewall 2520. The wire pro-
tocol for these interfaces can be encapsulated via HTTPS and
comply with the JSON-RPC specification. This allows easy
implementation, for example, via one or more available
libraries supplied by DB Networks of San Diego, Calif. It
should be understood that JSON-RPC is a well-known
remote procedure call protocol encoded in JavaScript Object
Notation.

In an embodiment, in addition to the discrete synchronous
RPC entry points, the init() call of the web-tier interface
enables an asynchronous stream, over which high-rate, per-
request data flows, to minimize overhead. Although the web-
tier interface is asynchronous, it maintains numerous kinds of
flow.

The following flow illustrates mutual authentication and
that, when new services are discovered, their information is
sent to database firewall 2520 for addition and/or removal by
an administrator. In the illustrated flows, DBFW refers to
database firewall 2520 and WTA refers to a web-tier agent
(e.g., the DBFW Web Agent, described above):

DBFW <=>WTA

Mutual Authentication.

=> The initial WebSocket connection (over HTTPS) from DBFW
=> DBFW Authentication

<= WTA Authentication (or an error message)

Addition/Removal of Services:

<= newService (as they are detected by WTA)

=> addService (as instructed by the DBFW administrator)

=> removeService (as instructed by the DBFW administrator)

Periodically, each unit may send a heartbeat message after
mutual authentication:

DBFW <=>WTA
=> DBFW Heartbeat

<=WTA Heartbeat

Depending on the capabilities of the web-tier agent and
administrator preferences for database firewall 1520, a few
different traffic flow patterns can be seen. By way of illustra-
tion only, three flows are illustrated that may be seen follow-
ing mutual authentication: simple monitoring, response
blocking, and session blocking.

20

30

40

45

50

55

60

90
Simple Monitoring. Even if a web-tier agent has no active
traffic capabilities, it can still feed database firewall 2520
valuable information to help in determining the existence of
an attack and identifying the attacker:

DBFW <=>WTA

=> Set Session Action (to start a disconnect, redirect, error
notification, etc.)

<= HTTP Request (filtered to types that can contain injections)

<=HTTP Response (filtered to types that can contain injections)

=> Attack Event (optionally sent to WTA so it can log it)

Response Blocking. If the web-tier agent is capable of
holding messages, it can be set to hold the responses for
particular kinds of requests until directed to release them.
This canbeused to block and discard the response to an attack
request. This operation may be performed even if no session
is detected. For instance, this may be performed in an inline/
proxy device (e.g., proxy, load balancer, or firewall). When
the web-tier agent detects traffic, it may initiate the following
message flow:

DBFW <=>WTA

=> Set Session Action (to response holding)

<= HTTP Request (filtered to types that can contain injections)

<=HTTP Response (filtered to types that cancontain injections)

(at this time, WTA holds the Response until instructed to release

or discard it)

=> Attack Event (an optional verbose description of the attack)

<= Event Adjudication

=> Discard Response (this can include the option to set a
blocking cookie so that this browser/client can be tracked
even if no session information is detected)

OR

=> Release Response

Response holding (i.e., holding a response until released or
discarded) can be used alone or in cooperation with session
blocking, described below.

Session Blocking. After the initial response blocking,
described above, additional requests to a session can also be
blocked before they affect the database. When the database
firewall 2520 detects an “evil” session (i.e., a session com-
prising a malicious request/response), it can block future
requests on just that session using the following message
flow:

DBFW <=>WTA

=> Set Session Action (to start a disconnect, redirect, error
notif. for a session)

(If a new request comes in using this session, it is

automatically acted upon.)

<= Action Notification

=> Set Session Action (optionally, done later to clear the
blocking)

Session Blocking can be used alone or in cooperation with
response holding.

11. Mitigation

Embodiments and operations of mitigation module 1385,
illustrated in FIG. 13, will now be described in detail. In an
embodiment, each of the actions described in this section are
carried out by the mitigation module 1385. In an embodi-
ment, three forms of attack mitigation are provided: web
blocking, database session killing, and/or database inline
blocking. These three forms of mitigation may be config-
urable by an operator on a per-database basis.

US 9,185,125 B2

91

11.1. Web Blocking

In web blocking mode, responses to web requests are held
until they are known to not create an attack on the database.
When an attack is detected, data is blocked at the web tier.
Furthermore, future requests made by the same client, ses-
sion, or login may be rejected. This is described above in more
detail, with respect to the web-tier interface.

11.2. Database Session Killing

The operator may configure administrator-level creden-
tials for a database into the system. In database session killing
mode, when an attack is detected (e.g., attacking SQL), an
administrative command is issued to the database server to
kill the session executing the attack.

11.3. Database Inline Blocking

In database inline blocking mode, a Layer 4 (Transport
Layer) proxy system is used between the database server and
its clients. The TCP stack in a Linux kernel may be modified
to appear transparent at Layer 2 and above (i.e., at the Data
Link Layer and above) to the database server and its clients.
To the system, it appears that the clients are creating a TCP
connection to the proxy system, and the proxy system, in turn,
establishes a TCP connection to the database server.

In normal operation, data is proxied byte for byte between
the database server and the client. The capture system (e.g.,
capture/analysis device 107 described above) is configured to
monitor the traffic between the client and the proxy system.
When a turnaround is detected by the bundler (e.g., bundler
508), the proxy system blocks further traffic on the given TCP
session and polls master scorer 1365 for adjudication of the
request that was just processed. If the request is not deter-
mined to be an attack, the proxy is released and the request or
response flows to the server or client. On the other hand, if the
request is determined to be an attack, the operator may con-
figure the system such that the connection is broken or a
synthetic response is returned (e.g., indicating an error).

The proxy system may also be used to rewrite the SQL or
parameters of the request to remove an attack, but otherwise
allow the request to complete. Additionally or alternatively,
the proxy system may be used to rewrite or limit the result
rows from the database server.

Anoperator can physically connect the database server and
its clients (usually through a Layer 2 switch) to ports on the
proxy system. In this manner, the proxy system acts as a Layer
2 proxy for any non-TCP traffic and acts as a TCP back-to-
back proxy for all TCP connections established from the
client side to the server side. A Linux kernel stack may be
modified such that the proxy system appears to take on the
identity of the database server to the clients and take on the
identity of the clients to the server at Layer 2 (e.g., the MAC
sublayer of the Data Link Layer) and Layer 3 (IP or Network
Layer). This allows a simple relay or optical bypass based
system at level one to provide fail-safe operation. If power is
lost, the database server and its clients continue to operate
without any reconfiguration.

Another method that may be used is to configure two
VLANSs and use a single port. In this configuration, the same
mechanism as described above applies, but with no physical
bypass safety. In this mode, a stand-alone process may moni-
tor the health of the proxy aspect of the system and convert the
kernel into a cut-through Layer 2 bridge if the proxy system
fails to respond to health probes.

A further method that may be used is simple IP reassign-
ment. In this mode, the proxy system is configured to look like
the database server from the perspective of the clients. How-
ever, from the perspective of the database server, all connec-
tions appear to come from the proxy system’s assigned IP
address or addresses.

10

15

20

25

30

35

40

45

55

60

65

92

12. Example Processing Device

FIG. 28 is a block diagram illustrating an example wired or
wireless system 550 that may be used in connection with
various embodiments described herein. For example the sys-
tem 550 may be used as or in conjunction with one or more of
the mechanisms or processes described above. The system
550 can be a server or any conventional personal computer, or
any other processor-enabled device that is capable of wired or
wireless data communication. Other computer systems and/
or architectures may be also used, as will be clear to those
skilled in the art.

The system 550 preferably includes one or more proces-
sors, such as processor 560. Additional processors may be
provided, such as an auxiliary processor to manage input/
output, an auxiliary processor to perform floating point math-
ematical operations, a special-purpose microprocessor hav-
ing an architecture suitable for fast execution of signal
processing algorithms (e.g., digital signal processor), a slave
processor subordinate to the main processing system (e.g.,
back-end processor), an additional microprocessor or con-
troller for dual or multiple processor systems, or a coproces-
sor. Such auxiliary processors may be discrete processors or
may be integrated with the processor 560. Examples of pro-
cessors which may be used with system 550 include, without
limitation, the Pentium® processor, Core i7® processor, and
Xeon® processor, all of which are available from Intel Cor-
poration of Santa Clara, Calif.

The processor 560 is preferably connected to a communi-
cation bus 555. The communication bus 555 may include a
data channel for facilitating information transfer between
storage and other peripheral components of the system 550.
The communication bus 555 further may provide a set of
signals used for communication with the processor 560,
including a data bus, address bus, and control bus (not
shown). The communication bus 555 may comprise any stan-
dard or non-standard bus architecture such as, for example,
bus architectures compliant with industry standard architec-
ture (ISA), extended industry standard architecture (EISA),
Micro Channel Architecture (MCA), peripheral component
interconnect (PCI) local bus, or standards promulgated by the
Institute of FElectrical and Electronics Engineers (IEEE)
including IEEE 488 general-purpose interface bus (GPIB),
IEEE 696/S-100, and the like.

System 550 preferably includes a main memory 565 and
may also include a secondary memory 570. The main
memory 565 provides storage of instructions and data for
programs executing on the processor 560, such as one or more
of the functions and/or modules discussed above. It should be
understood that programs stored in the memory and executed
by processor 560 may be written and/or compiled according
to any suitable language, including, without limitation, SML,,
C/C++, Java, JavaScript, Perl, Visual Basic, .NET, and the
like. The main memory 565 is typically semiconductor-based
memory such as dynamic random access memory (DRAM)
and/or static random access memory (SRAM). Other semi-
conductor-based memory types include, for example, syn-
chronous dynamic random access memory (SDRAM), Ram-
bus dynamic random access memory (RDRAM),
ferroelectric random access memory (FRAM), and the like,
including read only memory (ROM).

The secondary memory 570 may optionally include an
internal memory 575 and/or a removable medium 580, for
example a floppy disk drive, a magnetic tape drive, a compact
disc (CD) drive, a digital versatile disc (DVD) drive, other
optical drive, a flash memory drive, etc. The removable
medium 580 is read from and/or written to in a well-known

US 9,185,125 B2

93

manner. Removable storage medium 580 may be, for
example, a floppy disk, magnetic tape, CD, DVD, SD card,
etc.

The removable storage medium 580 is a non-transitory
computer-readable medium having stored thereon computer
executable code (i.e., software) and/or data. The computer
software or data stored on the removable storage medium 580
is read into the system 550 for execution by the processor 560.

In alternative embodiments, secondary memory 570 may
include other similar means for allowing computer programs
or other data or instructions to be loaded into the system 550.
Such means may include, for example, an external storage
medium 595 and an interface 590. Examples of external stor-
age medium 595 may include an external hard disk drive or an
external optical drive, or and external magneto-optical drive.

Other examples of secondary memory 570 may include
semiconductor-based memory such as programmable read-
only memory (PROM), erasable programmable read-only
memory (EPROM), electrically erasable read-only memory
(EEPROM), or flash memory (block oriented memory similar
to EEPROM). Also included are any other removable storage
media 580 and communication interface 590, which allow
software and data to be transferred from an external medium
595 to the system 550.

System 550 may include a communication interface 590.
The communication interface 590 allows software and data to
be transferred between system 550 and external devices (e.g.
printers), networks, or information sources. For example,
computer software or executable code may be transferred to
system 550 from a network server via communication inter-
face 590. Examples of communication interface 590 include
a built-in network adapter, network interface card (NIC),
Personal Computer Memory Card International Association
(PCMCIA) network card, card bus network adapter, wireless
network adapter, Universal Serial Bus (USB) network
adapter, modem, a network interface card (NIC), a wireless
data card, a communications port, an infrared interface, an
IEEE 1394 fire-wire, or any other device capable of interfac-
ing system 550 with a network or another computing device.

Communication interface 590 preferably implements
industry promulgated protocol standards, such as Ethernet
IEEE 802 standards, Fiber Channel, digital subscriber line
(DSL), asynchronous digital subscriber line (ADSL), frame
relay, asynchronous transfer mode (ATM), integrated digital
services network (ISDN), personal communications services
(PCS), transmission control protocol/Internet protocol (TCP/
1P), serial line Internet protocol/point to point protocol (SLIP/
PPP), and so on, but may also implement customized or
non-standard interface protocols as well.

Software and data transferred via communication interface
590 are generally in the form of electrical communication
signals 605. These signals 605 are preferably provided to
communication interface 590 via a communication channel
600. In one embodiment, the communication channel 600
may be a wired or wireless network, or any variety of other
communication links. Communication channel 600 carries
signals 605 and can be implemented using a variety of wired
or wireless communication means including wire or cable,
fiber optics, conventional phone line, cellular phone link,
wireless data communication link, radio frequency (“RF”)
link, or infrared link, just to name a few.

Computer executable code (i.e., computer programs or
software) is stored in the main memory 565 and/or the sec-
ondary memory 570. Computer programs can also be
received via communication interface 590 and stored in the
main memory 565 and/or the secondary memory 570. Such

10

15

20

25

30

35

40

45

50

55

60

65

94

computer programs, when executed, enable the system 550 to
perform the various functions of the present invention as
previously described.

In this description, the term “computer readable medium”
is used to refer to any non-transitory computer readable stor-
age media used to provide computer executable code (e.g.,
software and computer programs) to the system 550.
Examples of these media include main memory 565, second-
ary memory 570 (including internal memory 575, removable
medium 580, and external storage medium 595), and any
peripheral device communicatively coupled with communi-
cation interface 590 (including a network information server
or other network device). These non-transitory computer
readable mediums are means for providing executable code,
programming instructions, and software to the system 550.

In an embodiment that is implemented using software, the
software may be stored on a computer readable medium and
loaded into the system 550 by way of removable medium 580,
I/O interface 585, or communication interface 590. In such an
embodiment, the software is loaded into the system 550 in the
form of electrical communication signals 605. The software,
when executed by the processor 560, preferably causes the
processor 560 to perform the inventive features and functions
previously described herein.

In an embodiment, I/O interface 585 provides an interface
between one or more components of system 550 and one or
more input and/or output devices. Example input devices
include, without limitation, keyboards, touch screens or other
touch-sensitive devices, biometric sensing devices, computer
mice, trackballs, pen-based pointing devices, and the like.
Examples of output devices include, without limitation, cath-
ode ray tubes (CRTs), plasma displays, light-emitting diode
(LED) displays, liquid crystal displays (LCDs), printers,
vacuum florescent displays (VFDs), surface-conduction elec-
tron-emitter displays (SEDs), field emission displays (FEDs),
and the like.

The system 550 also includes optional wireless communi-
cation components that facilitate wireless communication
over a voice and over a data network. The wireless commu-
nication components comprise an antenna system 610, a radio
system 615 and a baseband system 620. In the system 550,
radio frequency (RF) signals are transmitted and received
over the air by the antenna system 610 under the management
of the radio system 615.

In one embodiment, the antenna system 610 may comprise
one or more antennae and one or more multiplexors (not
shown) that perform a switching function to provide the
antenna system 610 with transmit and receive signal paths. In
the receive path, received RF signals can be coupled from a
multiplexor to a low noise amplifier (not shown) that ampli-
fies the received RF signal and sends the amplified signal to
the radio system 615.

In alternative embodiments, the radio system 615 may
comprise one or more radios that are configured to commu-
nicate over various frequencies. In one embodiment, the radio
system 615 may combine a demodulator (not shown) and
modulator (not shown) in one integrated circuit (IC). The
demodulator and modulator can also be separate components.
In the incoming path, the demodulator strips away the RF
carrier signal leaving a baseband receive audio signal, which
is sent from the radio system 615 to the baseband system 620.

If the received signal contains audio information, then
baseband system 620 decodes the signal and converts it to an
analog signal. Then the signal is amplified and sent to a
speaker. The baseband system 620 also receives analog audio
signals from a microphone. These analog audio signals are
converted to digital signals and encoded by the baseband

US 9,185,125 B2

95

system 620. The baseband system 620 also codes the digital
signals for transmission and generates a baseband transmit
audio signal that is routed to the modulator portion of the
radio system 615. The modulator mixes the baseband trans-
mit audio signal with an RF carrier signal generating an RF
transmit signal that is routed to the antenna system and may
pass through a power amplifier (not shown). The power
amplifier amplifies the RF transmit signal and routes it to the
antenna system 610 where the signal is switched to the
antenna port for transmission.

The baseband system 620 is also communicatively coupled
with the processor 560. The central processing unit 560 has
access to data storage areas 565 and 570. The central process-
ing unit 560 is preferably configured to execute instructions
(i.e., computer programs or software) that can be stored in the
memory 565 or the secondary memory 570. Computer pro-
grams can also be received from the baseband processor 610
and stored in the data storage area 565 or in secondary
memory 570, or executed upon receipt. Such computer pro-
grams, when executed, enable the system 550 to perform the
various functions of the present invention as previously
described. For example, data storage areas 565 may include
various software modules (not shown).

Various embodiments may also be implemented primarily
in hardware using, for example, components such as applica-
tion specific integrated circuits (ASICs), or field program-
mable gate arrays (FPGAs). Implementation of a hardware
state machine capable of performing the functions described
herein will also be apparent to those skilled in the relevant art.
Various embodiments may also be implemented using a com-
bination of both hardware and software.

It should be understood that system 550 may represent the
hardware components of one or more of client 1130, web
server 1110, application server 1112, database server 1114,
system 1300, hosts 1410 and 1430, tap 1440, and monitoring
device 1450. For example, each of the modules 1305-1395 in
system 1300 may reside in one or more of a main memory 565
and a secondary medium 570, and be executed by one or more
processors 560. These modules 1305-1395 of system 1300
may all reside on one system 550 or be distributed across a
plurality of systems 550, such that system 1300 may comprise
one system 550 or a plurality of systems 550. In addition,
modules 1305-1395 may communicate with each other and
with other modules (e.g., web agent 2330), via communica-
tion interface 590 and/or antenna 610 using standard commu-
nication protocols. It should also be understood that modules
which provide a user interface (e.g., operator interfaces 1395)
may utilize /O interface 585, for example, to provide a dis-
play and receive input operations, and/or communication
interface 590, for example, to serve user interfaces (e.g., via
web server 1110) to the browser of a user’s device.

Furthermore, those of skill in the art will appreciate that the
various illustrative logical blocks, modules, circuits, and
method steps described in connection with the above
described figures and the embodiments disclosed herein can
often be implemented as electronic hardware, computer soft-
ware, or combinations of both. To clearly illustrate this inter-
changeability of hardware and software, various illustrative
components, blocks, modules, circuits, and steps have been
described above generally in terms of their functionality.
Whether such functionality is implemented as hardware or
software depends upon the particular application and design
constraints imposed on the overall system. Skilled persons
can implement the described functionality in varying ways
for each particular application, but such implementation deci-
sions should not be interpreted as causing a departure from
the scope of the invention. In addition, the grouping of func-

10

15

20

25

30

35

40

45

50

55

60

96

tions within a module, block, circuit or step is for ease of
description. Specific functions or steps can be moved from
one module, block or circuit to another without departing
from the invention.

Moreover, the various illustrative logical blocks, modules,
functions, and methods described in connection with the
embodiments disclosed herein can be implemented or per-
formed with a general purpose processor, a digital signal
processor (DSP), an ASIC, FPGA, or other programmable
logic device, discrete gate or transistor logic, discrete hard-
ware components, or any combination thereof designed to
perform the functions described herein. A general-purpose
processor can be a microprocessor, but in the alternative, the
processor can be any processor, controller, microcontroller,
or state machine. A processor can also be implemented as a
combination of computing devices, for example, a combina-
tion of a DSP and a microprocessor, a plurality of micropro-
cessors, one or more microprocessors in conjunction with a
DSP core, or any other such configuration.

Additionally, the steps of a method or algorithm described
in connection with the embodiments disclosed herein can be
embodied directly in hardware, in a software module
executed by a processor, or in a combination of the two. A
software module can reside in RAM memory, flash memory,
ROM memory, EPROM memory, EEPROM memory, regis-
ters, hard disk, a removable disk, a CD-ROM, or any other
form of storage medium including a network storage
medium. An exemplary storage medium can be coupled to the
processor such that the processor can read information from,
and write information to, the storage medium. In the alterna-
tive, the storage medium can be integral to the processor. The
processor and the storage medium can also reside in an ASIC.

Any ofthe software components described herein may take
a variety of forms. For example, a component may be a
stand-alone software package, or it may be a software pack-
age incorporated as a “tool” in a larger software product. It
may be downloadable from a network, for example, a web-
site, as a stand-alone product or as an add-in package for
installation in an existing software application. It may also be
available as a client-server software application, as a web-
enabled software application, and/or as a mobile application.

The above description of the disclosed embodiments is
provided to enable any person skilled in the art to make or use
the invention. Various modifications to these embodiments
will be readily apparent to those skilled in the art, and the
general principles described herein can be applied to other
embodiments without departing from the spirit or scope of the
invention. Thus, it is to be understood that the description and
drawings presented herein represent a presently preferred
embodiment of the invention and are therefore representative
of the subject matter which is broadly contemplated by the
present invention. It is further understood that the scope of the
present invention fully encompasses other embodiments that
may become obvious to those skilled in the art and that the
scope of the present invention is accordingly not limited.

What is claimed is:

1. A method for detecting threats on a network, the method
comprising:

capturing target network traffic being transmitted between

two or more hosts, wherein the target network traffic
comprises a plurality of packets; and

using at least one hardware processor to

assemble the plurality of packets into one or more mes-
sages,

parse the assembled one or more messages to generate a
semantic model of the target network traffic, wherein
the semantic model comprises one or more represen-

US 9,185,125 B2

97

tations of one or more operations or events repre-
sented by the one or more messages,

generate one or more scores for the one or more opera-
tions or events using a plurality of scoring algorithms,
and

identify one or more potentially threatening ones of the
one or more operations or events based on the one or
more scores.

2. The method of claim 1, wherein generating the semantic
model of the target network traffic comprises generating one
ormore language-independent representations of one or more
operations or events represented by the one or more mes-
sages.

3. The method of claim 2, wherein each of the one or more
language-independent representations of one or more opera-
tions or events identify one or more of a session, a user, a
database server, a type of operation or event, a lexical struc-
ture of one or more messages associated with the operation or
event, a parse structure of the one or more messages associ-
ated with the operation or event, a semantic structure of the
one or more messages associated with the operation or event,
and timing data related to the operation or event.

4. The method of claim 2, wherein parsing the one or more
messages to generate a semantic model of the target network
traffic comprises:

lexically analyzing the assembled one or more messages

into a plurality of dialect-independent tokens;

parsing one or more sequences of the plurality of tokens

into one or more parse trees comprising a plurality of
parse nodes; and

semantically analyzing the one or more parse trees to gen-

erate one or more dialect-independent semantic repre-
sentations of the one or more operations or events.

5. The method of claim 4, wherein generating one or more
scores for the one or more operations or events using a plu-
rality of scoring algorithms comprises:

traversing the one or more parse trees to identify one or

more operations or events;

generating a first score for at least one of the one or more

operations or events using a first one of the plurality of
scoring algorithms;

generating a second score for the at least one operation or

event using a second one of the plurality of scoring
algorithms, wherein the second algorithm is different
than the first algorithm; and

computing a total score for the at least one operation or

event based, at least in part, on the first score and the
second score.

6. The method of claim 1, further comprising:

receiving one or more representations of acceptable net-

work traffic; and

training each of one or more of the plurality of scoring

algorithms to score target operations or events using the
one or more representations of acceptable network traf-
fic.

7. The method of claim 6, wherein the one or more repre-
sentations of acceptable network traffic comprise a plurality
of representations of acceptable operations or events, and
wherein training at least one of the one or more scoring
algorithms to score target operations or events using the one
or more representations of acceptable network traffic com-
prises:

parsing the plurality of representations of acceptable

operations or events into a plurality of parse trees; and
generating a pattern-matching tree that is an isomorphism

between two or more of the plurality of parse trees and

represents a unification of the two or more parse trees.

10

15

20

25

30

35

40

45

50

55

98

8. The method of claim 7, wherein generating one or more
scores for the one or more operations or events using a plu-
rality of scoring algorithms comprises generating a score for
a target operation or event using the at least one scoring
algorithm by:

parsing a representation of the target operation or event

into a target parse tree;

computing a tree-edit distance comprising a minimum

number of edits necessary to unify the target parse tree
with the pattern-matching tree; and,

based on the tree-edit distance, generating a scalar value

indicating a probability that the target operation or event
represents a malicious attack or nominal application
variability.

9. The method of claim 6, wherein training at least one of
the one or more scoring algorithms to score target operations
or events using the one or more representations of acceptable
network traffic comprises generating one or more profiles of
normal network traffic, wherein the one or more profiles of
normal network traffic comprise one or more of a normal
number of rows returned by an operation, a normal execution
time of an operation, one or more normal parameter values for
an operation, one or more normal types of content returned by
an operation, a normal execution time of an operation for a
certain time period, a normal frequency of an operation for a
certain time period, an identifier of an application, and a
model of normal execution semantics for an operation.

10. The method of claim 6, wherein training the one or
more scoring algorithms comprises, for each of the one or
more scoring algorithms, generating a model, for scoring
operations or events, using the one or more representations of
acceptable network traffic.

11. The method of claim 6, wherein at least one of the
trained one or more scoring algorithms determines whether a
structural signature of a target operation within the target
network traffic matches the structural signature of an accept-
able operation, learned during training of the at least one
scoring algorithm, to generate a score for the target operation.

12. The method of claim 11, wherein the at least one trained
scoring algorithm determines a minimum edit distance
between a structure of the target operation and a structure of
the acceptable operation, and wherein the minimum edit dis-
tance represents a minimum number of insertions required to
create the structure of the target operation from the structure
of the acceptable operation.

13. The method of claim 11, wherein the target operation
comprises a structured query language (SQL) statement.

14. The method of claim 13, wherein the at least one trained
scoring algorithm maintains a set of one or more templates of
acceptable SQL statements.

15. The method of claim 6, wherein the at least one scoring
algorithm comprises a first scoring algorithm, and wherein a
second one of the plurality of scoring algorithms:

determines a background frequency of lexical errors within

one or more acceptable operations learned during train-
ing of the first scoring algorithm;

identifies one or more lexical errors within a target opera-

tion within the target network traffic; and

computes a probability that the one or more lexical errors

within the target operation are in accordance with the
background frequency of lexical errors within the one or
more acceptable operations learned during the training
of the first scoring algorithm.

16. The method of claim 1, wherein at least one of the
plurality of scoring algorithms searches a target operation

US 9,185,125 B2

99

within the target network traffic for one or more segments of
structured query language (SQL) that potentially indicate an
attack.

17. The method of claim 16, wherein the one or more
segments of SQL represent potentially one or more SQL
injections.

18. The method of claim 16, wherein the one or more
segments of SQL represent potentially one or more time-
consuming SQL clauses.

19. The method of claim 18, wherein each of the one or
more segments of SQL is associated with one or more per-
formance parameters, and wherein the at least one scoring
algorithm calculates an estimated performance metric for the
target operation based on the one or more performance
parameters associated with any of the one or more segments
of SQL identified within the target operation.

20. The method of claim 1, wherein at least one of the
plurality of scoring algorithms parses a structured query lan-
guage (SQL) statement into a plurality of segments, and
determines whether the plurality of segments satisfy one or
more criteria.

21. The method of claim 1, wherein assembling the plural-
ity of packets into one or more messages comprises:

synchronizing the plurality of packets;

sorting each of the plurality of packets into one of two host

queues according to the transmission direction of the
packet;

processing the two host queues into a single push queue by

alternately processing the packets in one of the two host
queues until a packet is encountered which cannot be
disposed of or the host queue is empty and then process-
ing the packets in the other one of the two host queues
until a packet is encountered that cannot be disposed of
or the host queue is empty;

if loss of a packet is detected, generating a synthetic gap

packet to stand in for the lost packet; and

bundling packets in the single push queue into the one or

more messages, wherein each of the one or more mes-
sages is a request message Or a response message.

22. The method of claim 21, wherein the synthetic gap
packet comprises an indication that it is a stand-in for a lost
packet.

23. The method of claim 1, further comprising preventing
one or more identified potentially threatening operations
from being performed on a database that is accessible to one
of the two or more hosts.

24. A system for detecting threats on a network, the system
comprising:

at least one hardware processor; and

one or more executable modules that, when executed by the

at least one hardware processor,

capture target network traffic being transmitted between
two or more hosts, wherein the target network traffic
comprises a plurality of packets,

assemble the plurality of packets into one or more mes-
sages,

parse the assembled one or more messages to generate a
semantic model of the target network traffic, wherein
the semantic model comprises one or more represen-
tations of one or more operations or events repre-
sented by the one or more messages,

generate one or more scores for the one or more opera-
tions or events using a plurality of scoring algorithms,
and

identify one or more potentially threatening ones of the
one or more operations or events based on the one or
more scores.

10

15

20

25

30

35

40

45

50

55

60

65

100

25. The system of claim 24, wherein generating the seman-
tic model of the target network traffic comprises generating
one or more language-independent representations of one or
more operations or events represented by the one or more
messages.

26. The system of claim 25, wherein each of the one or
more language-independent representations of one or more
operations or events identify one or more of a session, a user,
a database server, a type of operation or event, a lexical
structure of one or more messages associated with the opera-
tion or event, a parse structure of the one or more messages
associated with the operation or event, a semantic structure of
the one or more messages associated with the operation or
event, and timing data related to the operation or event.

27. The system of claim 25, wherein parsing the one or
more messages to generate a semantic model of the target
network traffic comprises:

lexically analyzing the assembled one or more messages

into a plurality of dialect-independent tokens;

parsing one or more sequences of the plurality of tokens

into one or more parse trees comprising a plurality of
parse nodes; and

semantically analyzing the one or more parse trees to gen-

erate one or more dialect-independent semantic repre-
sentations of the one or more operations or events.

28. The system of claim 27, wherein generating one or
more scores for the one or more operations or events using a
plurality of scoring algorithms comprises:

traversing the one or more parse trees to identify one or

more operations or events;

generating a first score for at least one of the one or more

operations or events using a first one of the plurality of
scoring algorithms;

generating a second score for the at least one operation or

event using a second one of the plurality of scoring
algorithms, wherein the second algorithm is different
than the first algorithm; and

computing a total score for the at least one operation or

event based, at least in part, on the first score and the
second score.

29. The system of claim 24, wherein the one or more
executable modules further:

receive one or more representations of acceptable network

traffic; and

train each of one or more of the plurality of scoring algo-

rithms to score target operations or events using the one
or more representations of acceptable network traffic.

30. The system of claim 29, wherein the one or more
representations of acceptable network traffic comprise a plu-
rality of representations of acceptable operations or events,
and wherein training at least one of the one or more scoring
algorithms to score target operations or events using the one
or more representations of acceptable network traffic com-
prises:

parsing the plurality of representations of acceptable

operations or events into a plurality of parse trees; and
generating a pattern-matching tree that is an isomorphism

between two or more of the plurality of parse trees and

represents a unification of the two or more parse trees.

31. The system of claim 30, wherein generating one or
more scores for the one or more operations or events using a
plurality of scoring algorithms comprises generating a score
for a target operation or event using the at least one scoring
algorithm by:

parsing a representation of the target operation or event

into a target parse tree;

US 9,185,125 B2

101

computing a tree-edit distance comprising a minimum
number of edits necessary to unify the target parse tree
with the pattern-matching tree; and,

based on the tree-edit distance, generating a scalar value

indicating a probability that the target operation or event
represents a malicious attack or nominal application
variability.

32. The system of claim 29, wherein training at least one of
the one or more scoring algorithms to score target operations
or events using the one or more representations of acceptable
network traffic comprises generating one or more profiles of
normal network traffic, wherein the one or more profiles of
normal network traffic comprise one or more of a normal
number of rows returned by an operation, a normal execution
time of an operation, one or more normal parameter values for
an operation, one or more normal types of content returned by
an operation, a normal execution time of an operation for a
certain time period, a normal frequency of an operation for a
certain time period, an identifier of an application, and a
model of normal execution semantics for an operation.

33. The system of claim 29, wherein training the one or
more scoring algorithms comprises, for each of the one or
more scoring algorithms, generating a model, for scoring
operations or events, using the one or more representations of
acceptable network traffic.

34. The system of claim 29, wherein at least one of the
trained one or more scoring algorithms determines whether a
structural signature of a target operation within the target
network traffic matches the structural signature of an accept-
able operation, learned during training of the at least one
scoring algorithm, to generate a score for the target operation.

35. The system of claim 34, wherein the at least one trained
scoring algorithm determines a minimum edit distance
between a structure of the target operation and a structure of
the acceptable operation, and wherein the minimum edit dis-
tance represents a minimum number of insertions required to
create the structure of the target operation from the structure
of the acceptable operation.

36. The system of claim 34, wherein the target operation
comprises a structured query language (SQL) statement.

37. The system of claim 36, wherein the at least one trained
scoring algorithm maintains a set of one or more templates of
acceptable SQL statements.

38. The system of claim 29, wherein the at least one scoring
algorithm comprises a first scoring algorithm, and wherein a
second one of the plurality of scoring algorithms:

determines a background frequency of lexical errors within

one or more acceptable operations learned during train-
ing of the first scoring algorithm;

identifies one or more lexical errors within a target opera-

tion within the target network traffic; and

computes a probability that the one or more lexical errors

within the target operation are in accordance with the
background frequency of lexical errors within the one or
more acceptable operations learned during the training
of' the first scoring algorithm.

39. The system of claim 24, wherein at least one of the
plurality of scoring algorithms searches a target operation
within the target network traffic for one or more segments of
structured query language (SQL) that potentially indicate an
attack.

40. The system of claim 39, wherein the one or more
segments of SQL represent potentially one or more SQL
injections.

41. The system of claim 39, wherein the one or more
segments of SQL represent potentially one or more time-
consuming SQL clauses.

15

20

25

30

40

45

55

102

42. The system of claim 41, wherein each of the one or
more segments of SQL is associated with one or more per-
formance parameters, and wherein the at least one scoring
algorithm calculates an estimated performance metric for the
target operation based on the one or more performance
parameters associated with any of the one or more segments
of SQL identified within the target operation.

43. The system of claim 24, wherein at least one of the
plurality of scoring algorithms parses a structured query lan-
guage (SQL) statement into a plurality of segments, and
determines whether the plurality of segments satisfy one or
more criteria.

44. The system of claim 24, wherein assembling the plu-
rality of packets into one or more messages comprises:

synchronizing the plurality of packets;

sorting each of the plurality of packets into one of two host

queues according to the transmission direction of the
packet;

processing the two host queues into a single push queue by

alternately processing the packets in one of the two host
queues until a packet is encountered which cannot be
disposed of or the host queue is empty and then process-
ing the packets in the other one of the two host queues
until a packet is encountered that cannot be disposed of
or the host queue is empty;

if loss of a packet is detected, generating a synthetic gap

packet to stand in for the lost packet; and

bundling packets in the single push queue into the one or

more messages, wherein each of the one or more mes-
sages is a request message oOr a response message.

45. The system of claim 44, wherein the synthetic gap
packet comprises an indication that it is a stand-in for a lost
packet.

46. The system of claim 24, wherein the one or more
executable modules further prevent one or more identified
potentially threatening operations from being performed on a
database that is accessible to one of the two or more hosts.

47. A non-transitory computer-readable medium having
one or more instructions stored thereon for detecting threats
on a network, wherein the one or more instructions, when
executed by a processor, cause the processor to:

capture target network traffic being transmitted between

two or more hosts, wherein the target network traffic
comprises a plurality of packets;

assemble the plurality of packets into one or more mes-

sages;
parse the assembled one or more messages to generate a
semantic model of the target network traffic, wherein the
semantic model comprises one or more representations
of one or more operations or events represented by the
one or more messages;
generate one or more scores for the one or more operations
or events using a plurality of scoring algorithms; and

identify one or more potentially threatening ones of the one
or more operations or events based on the one or more
scores.

48. The non-transitory computer-readable medium of
claim 47, wherein generating the semantic model of the target
network traffic comprises generating one or more language-
independent representations of one or more operations or
events represented by the one or more messages.

49. The non-transitory computer-readable medium of
claim 42, wherein each of the one or more language-indepen-
dent representations of one or more operations or events
identify one or more of a session, a user, a database server, a
type of operation or event, a lexical structure of one or more
messages associated with the operation or event, a parse

US 9,185,125 B2

103

structure of the one or more messages associated with the
operation or event, a semantic structure of the one or more
messages associated with the operation or event, and timing
data related to the operation or event.

50. The non-transitory computer-readable medium of
claim 48, wherein parsing the one or more messages to gen-
erate a semantic model of the target network traffic com-
prises:

lexically analyzing the assembled one or more messages

into a plurality of dialect-independent tokens;

parsing one or more sequences of the plurality of tokens

into one or more parse trees comprising a plurality of
parse nodes; and

semantically analyzing the one or more parse trees to gen-

erate one or more dialect-independent semantic repre-
sentations of the one or more operations or events.

51. The non-transitory computer-readable medium of
claim 50, wherein generating one or more scores for the one
or more operations or events using a plurality of scoring
algorithms comprises:

traversing the one or more parse trees to identify one or

more operations or events;

generating a first score for at least one of the one or more

operations or events using a first one of the plurality of
scoring algorithms;

generating a second score for the at least one operation or

event using a second one of the plurality of scoring
algorithms, wherein the second algorithm is different
than the first algorithm; and

computing a total score for the at least one operation or

event based, at least in part, on the first score and the
second score.

52. The non-transitory computer-readable medium of
claim 47, wherein the one or more instructions, when
executed by the processor, further cause the processor to:

receive one or more representations of acceptable network

traffic; and

train each of one or more of the plurality of scoring algo-

rithms to score target operations or events using the one
or more representations of acceptable network traffic.

53. The non-transitory computer-readable medium of
claim 52, wherein the one or more representations of accept-
able network traffic comprise a plurality of representations of
acceptable operations or events, and wherein training at least
one of the one or more scoring algorithms to score target
operations or events using the one or more representations of
acceptable network traffic comprises:

parsing the plurality of representations of acceptable

operations or events into a plurality of parse trees; and
generating a pattern-matching tree that is an isomorphism

between two or more of the plurality of parse trees and

represents a unification of the two or more parse trees.

54. The non-transitory computer-readable of claim 53,
wherein generating one or more scores for the one or more
operations or events using a plurality of scoring algorithms
comprises generating a score for a target operation or event
using the at least one scoring algorithm by:

parsing a representation of the target operation or event

into a target parse tree;

computing a tree-edit distance comprising a minimum

number of edits necessary to unify the target parse tree
with the pattern-matching tree; and,

based on the tree-edit distance, generating a scalar value

indicating a probability that the target operation or event
represents a malicious attack or nominal application
variability.

10

15

25

30

35

40

45

50

55

60

104

55. The non-transitory computer-readable of claim 52,
wherein training at least one of the one or more scoring
algorithms to score target operations or events using the one
or more representations of acceptable network traffic com-
prises generating one or more profiles of normal network
traffic, wherein the one or more profiles of normal network
traffic comprise one or more of a normal number of rows
returned by an operation, a normal execution time of an
operation, one or more normal parameter values for an opera-
tion, one or more normal types of content returned by an
operation, a normal execution time of an operation for a
certain time period, a normal frequency of an operation for a
certain time period, an identifier of an application, and a
model of normal execution semantics for an operation.

56. The non-transitory computer-readable medium of
claim 52, wherein training the one or more scoring algorithms
comprises, for each of the one or more scoring algorithms,
generating a model, for scoring operations or events, using
the one or more representations of acceptable network traffic.

57. The non-transitory computer-readable medium of
claim 52, wherein at least one of the trained one or more
scoring algorithms determines whether a structural signature
of a target operation within the target network traffic matches
the structural signature of an acceptable operation, learned
during training of the at least one scoring algorithm, to gen-
erate a score for the target operation.

58. The non-transitory computer-readable medium of
claim 57, wherein the at least one trained scoring algorithm
determines a minimum edit distance between a structure of
the target operation and a structure of the acceptable opera-
tion, and wherein the minimum edit distance represents a
minimum number of insertions required to create the struc-
ture of the target operation from the structure of the accept-
able operation.

59. The non-transitory computer-readable medium of
claim 57, wherein the target operation comprises a structured
query language (SQL) statement.

60. The non-transitory computer-readable medium of
claim 59, wherein the at least one trained scoring algorithm
maintains a set of one or more templates of acceptable SQL
statements.

61. The non-transitory computer-readable medium of
claim 52, wherein the at least one scoring algorithm com-
prises a first scoring algorithm, and wherein a second one of
the plurality of scoring algorithms:

determines a background frequency of lexical errors within

one or more acceptable operations learned during train-
ing of the first scoring algorithm;

identifies one or more lexical errors within a target opera-

tion within the target network traffic; and

computes a probability that the one or more lexical errors

within the target operation are in accordance with the
background frequency of lexical errors within the one or
more acceptable operations learned during the training
of the first scoring algorithm.

62. The non-transitory computer-readable medium of
claim 47, wherein at least one of the plurality of scoring
algorithms searches a target operation within the target net-
work traffic for one or more segments of structured query
language (SQL) that potentially indicate an attack.

63. The non-transitory computer-readable medium of
claim 62, wherein the one or more segments of SQL represent
potentially one or more SQL injections.

64. The non-transitory computer-readable medium of
claim 62, wherein the one or more segments of SQL represent
potentially one or more time-consuming SQL clauses.

US 9,185,125 B2

105

65. The non-transitory computer-readable medium of
claim 64, wherein each of the one or more segments of SQL
is associated with one or more performance parameters, and
wherein the at least one scoring algorithm calculates an esti-
mated performance metric for the target operation based on
the one or more performance parameters associated with any
of the one or more segments of SQL identified within the
target operation.

66. The non-transitory computer-readable medium of
claim 47, wherein at least one of the plurality of scoring
algorithms parses a structured query language (SQL) state-
ment into a plurality of segments, and determines whether the
plurality of segments satisfy one or more criteria.

67. The non-transitory computer-readable medium of
claim 47, wherein assembling the plurality of packets into one
or more messages comprises:

synchronizing the plurality of packets;

sorting each of the plurality of packets into one of two host

queues according to the transmission direction of the
packet;

processing the two host queues into a single push queue by

alternately processing the packets in one of the two host

15

20

106

queues until a packet is encountered which cannot be
disposed of or the host queue is empty and then process-
ing the packets in the other one of the two host queues
until a packet is encountered that cannot be disposed of
or the host queue is empty;

if loss of a packet is detected, generating a synthetic gap
packet to stand in for the lost packet; and

bundling packets in the single push queue into the one or
more messages, wherein each of the one or more mes-
sages is a request message oOr a response message.

68. The non-transitory computer-readable medium of
claim 67, wherein the synthetic gap packet comprises an
indication that it is a stand-in for a lost packet.

69. The non-transitory computer-readable medium of
claim 47, wherein the one or more instructions, when
executed by the processor, further cause the processor to
prevent one or more identified potentially threatening opera-
tions from being performed on a database that is accessible to
one of the two or more hosts.

#* #* #* #* #*

